Phycoremediation of Wastewater

  • Chapter
  • First Online:
Ecophysiology and Biochemistry of Cyanobacteria

Abstract

In the past few decades, the world has encountered the climatic hitches, depletion of fossil fuel reserves, and the global rise in temperature and water pollution, which have been of utmost concern lately. These issues have raised various environmental, economic, and geopolitical concerns, also threatening global security and influencing the society in distinct ways. Despite the availability of substitutes for fossil fuels, they pose certain limitations which restrain their application in the global market. This shortcoming has intrigued the researchers worldwide and shifted the research focus toward the development, production, and commercialization of renewable and sustainable biofuels as an effective alternative for conventional energy sources. Cultivation of microalgal organisms with the inherent potential of phycoremediation can help curb the alarming global issues kee** into consideration the economics and sustainability of the process. The process of phycoremediation involves the employment of macro- or microalgal organisms that can reduce or biotransform various nutrients, toxic chemicals, and pollutants from wastewaters of diverse origins. This book chapter addresses different properties of algae contributing to wastewater treatment, more specifically the use of cyanobacteria and its consortium for effective removal of numerous pollutants from waste effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Razak AR, Sunar NM, Alias NA, Gani P, Subramaniam M (2016) Physiochemicals and heavy metal removal from domestic wastewater via phycoremediation. In: MATEC Web of Conferences (Vol. 47, p. 05003). EDP Sciences

    Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275

    Article  CAS  Google Scholar 

  • Abdel-Razek MA, Abozeid AM, Eltholth MM, Abouelenien FA, El-Midany SA, Moustafa NY, Mohamed RA (2019) Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov Vet 56(Suppl 22):61–73

    Google Scholar 

  • Abou-Shanab RAI, Ji M, Kim H, Paeng K, Jeon B (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manag 115:257–264

    Article  CAS  Google Scholar 

  • Ahmad S, Pandey A, Pathak VV, Tyagi VV, Kothari R (2020) Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 53–76

    Chapter  Google Scholar 

  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NM (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7(1):57–62

    Article  CAS  Google Scholar 

  • Apandi N, Mohamed RMSR, Al-Gheethi A, Latiffi A, Arifin SNH, Gani P (2018) Phycoremediation of heavy metals in wet market wastewater. IOP Conf Ser Earth Environ Sci 140(1):012017

    Article  Google Scholar 

  • Arias DM, García J, Uggetti E (2020a) Production of polymers by cyanobacteria grown in wastewater: current status, challenges and future perspectives. New Biotechnol 55:46–57

    Article  CAS  Google Scholar 

  • Arias DM, Uggetti E, García J (2020b) Assessing the potential of soil cyanobacteria for simultaneous wastewater treatment and carbohydrate-enriched biomass production. Algal Res 51:102042

    Article  Google Scholar 

  • Badr SA, Ghazy ME, Moghazy RM (2010) Toxicity assessment of cyanobacteria in a wastewater plant, Egypt. J Appl Sci Res 6:1511–1516

    CAS  Google Scholar 

  • Bakatula EN, Cukrowska EM, Weiersbye IM, Mihaly-Cozmuta L, Peter A, Tutu H (2014) Biosorption of trace elements from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). J Geochem Explor 144:492–503

    Article  CAS  Google Scholar 

  • Balzano S, Sardo A, Blasio M, Chahine TB, Dell’Anno F, Sansone C, Brunet C (2020) Microalgae metallothioneins and phytochelatins and their potential use in bioremediation. Front Microbiol 11:517

    Article  Google Scholar 

  • Bernal CB, Vazquez G, Quintal IB, Bussy AN (2008) Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air Soil Pollut 190:259–270

    Article  Google Scholar 

  • Bhatia D, Sharma NR, Kanwar R, Singh J (2018) Physicochemical assessment of industrial textile effluents of Punjab (India). Appl Water Sci 8(3):83

    Article  Google Scholar 

  • Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47(19):1836–1876

    Article  CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Bhola V, Swalaha F, Kumar RR, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol 11:2103–2118

    Article  CAS  Google Scholar 

  • Brar A, Kumar M, Vivekanand V, Pareek N (2017) Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech 7(1):18

    Article  Google Scholar 

  • Brar A, Kumar M, Vivekanand V, Pareek N (2019) Phycoremediation of textile effluent-contaminated water bodies employing microalgae: nutrient sequestration and biomass production studies. Int J Environ Sci Technol 16(12):7757–7768

    Article  CAS  Google Scholar 

  • Cechinel MA, Mayer DA, Pozdniakova TA, Mazur LP, Boaventura RA, de Souza AAU, Vilar VJ (2016) Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem Eng J 286:1–15

    Article  CAS  Google Scholar 

  • Cheunbarn S, Peerapornpisal Y (2010) Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. Int J Agric Biol 12(4):586–590

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010a) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–6760

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010b) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A (2020) Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod 253:119770

    Article  CAS  Google Scholar 

  • Dewangan N (2015) Wastewater treatment using inverse fluidization unit by algae (Doctoral dissertation)

    Google Scholar 

  • Dineshbabu G, Uma VS, Mathimani T, Deviram G, Ananth DA, Prabaharan D, Uma L (2017) On-site concurrent carbon dioxide sequestration from flue gas and calcite formation in ossein effluent by a marine cyanobacterium Phormidium valderianum BDU 20041. Energy Convers Manag 141:315–324

    Article  CAS  Google Scholar 

  • Dixit S, Singh DP (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytoremediation 15(8):801–813

    Article  CAS  Google Scholar 

  • Dubey SK, Dubey J, Viswas AJ, Tiwali P (2011) Studies on cyanobacterial biodiversity in paper mill and pharmaceutical industrial effluents. Biotechnol J Int 1:61–67

    Google Scholar 

  • Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Trivedi PK (2010) Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173(1–3):95–101

    Article  CAS  Google Scholar 

  • El-Bestawy E (2008) Treatment of mixed domestic–industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 35(11):1503–1516

    Article  CAS  Google Scholar 

  • Frampton DMF, Gurney RH, Dunstan GA, Clementson LA, Toifl MC, Pollard CB, Burn S, Jameson LD, Blackburn SI (2013) Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga. Bioresour Technol 130:261–268

    Article  CAS  Google Scholar 

  • Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere 92:738–744

    Article  CAS  Google Scholar 

  • Furtado ALFF, do Carmo Calijuri M, Lorenzi AS, Honda RY, Genuário DB, Fiore MF (2009) Morphological and molecular characterization of cyanobacteria from a Brazilian facultative wastewater stabilization pond and evaluation of microcystin production. Hydrobiologia 627(1):195–209

    Article  CAS  Google Scholar 

  • Fouilland E (2012) Biodiversity as a tool for waste phycoremediation and biomass production. Rev Environ Sci Biotechnol 11(1):1–4

    Article  Google Scholar 

  • Gani P, Mohamed N, Matias-Peralta H, Latiff AAA (2016) Application of phycoremediation technology in the treatment of food processing wastewater by freshwater microalgae Botryococcus sp. J Eng Appl Sci 11(11):7288–7292

    CAS  Google Scholar 

  • Ghosh S, Barinova S, Keshri JP (2012) Diversity and seasonal variation of phytoplankton community in the Santragachi lake, West Bengal, India. QScience Connect 2012:3

    Article  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue–green algae)—prospects and challenges. Algal Res 2:79–97

    Article  Google Scholar 

  • Biglari Quchan Atigh Z, Heidari A, Sepehr A, Bahreini M, Mahbub KR (2020) Bioremediation of heavy metal contaminated soils originated from Iron ore mine by bio-augmentation with native cyanobacteria. Iran J Energy Environ 11(2):89–96

    Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, **peng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102:9884–9890

    Article  Google Scholar 

  • Hussein NR, Gharib SM (2012) Studies on spatio-temporal dynamics of phytoplankton in El-Umum drain in west of Alexandria. Egypt J Biol 33:101–105

    Google Scholar 

  • Jais NM, Mohamed RMSR, Al-Gheethi AA, Hashim MA (2017) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Techn Environ Policy 19(1):37–52

    Article  CAS  Google Scholar 

  • Ji M, Abou-Shanab RAI, Kim S, Salama E, Lee S, Kabra AN, Lee Y, Hong S, Jeon B (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148

    Article  Google Scholar 

  • John J (2000) A self-sustainable remediation system for acidic mine voids. In: 4th International conference of diffuse pollution, pp. 506–511

    Google Scholar 

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129

    Article  Google Scholar 

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71:449–482

    Article  Google Scholar 

  • Kim J, Lingaraju BP, Rheaume R, Lee J, Siddiqui KF (2010) Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Sci Technol 4:391–396

    Article  Google Scholar 

  • Kirkwood AE, Nalewajko C, Fulthorpe RR (2001) The occurrence of cyanobacteria in pulp and paper waste-treatment systems. Can J Microbiol 47:761–766

    Article  CAS  Google Scholar 

  • Kumar D, Santhanam SP, Jayalakshmi T, Nandakumar R, Ananth S, Devi AS, Prasath BB (2015) Excessive nutrients and heavy metals removal from diverse wastewaters using marine microalga Chlorella marina (butcher). India J Geo-Mar Sci 44(1):97–103

    Google Scholar 

  • Kumar JN, Oommen C (2012) Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. J Environ Biol 33(1):27

    CAS  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Magro CD, Deon MC, Rossi AD, Reinehr CO, Hemkemeier M, Colla LM (2012) Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium. J Environ Sci Health A 47(12):1818–1824

    Article  CAS  Google Scholar 

  • Mahdavi H, Ulrich AC, Liu Y (2012) Metal removal from oil sands tailings pond water by indigenous micro-alga. Chemosphere 89(3):350–354

    Article  CAS  Google Scholar 

  • Makandar MB, Bhatnagar A (2010) Morphotypic diversity of microalgae in arid zones of Rajasthan. J Algal Biomass Utln 1:74–92

    Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88(10):3389–3401

    Article  CAS  Google Scholar 

  • Martins J, Peixe L, Vasconcelos VM (2011) Unraveling cyanobacteria ecology in wastewater treatment plants (WWTP). Microb Ecol 62(2):241–256

    Article  Google Scholar 

  • Mata TM, Melo AC, Simoes M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  CAS  Google Scholar 

  • Min M, Wang L, Li Y, Mohr MJ, Hu B, Zhou W, Chen P, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165:123–137

    Article  CAS  Google Scholar 

  • Mota R, Rossi F, Andrenelli L, Pereira SB, De Philippis R, Tamagnini P (2016) Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites. Appl Microbiol Biotechnol 100(17):7765–7775

    Article  CAS  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Bioabsorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164(4):420–428

    Article  CAS  Google Scholar 

  • Patel A, Matsakas L, Rova U, Christakopoulos P (2019) A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour Technol 278:424–434

    Article  CAS  Google Scholar 

  • Patel VK, Sundaram S, Patel AK, Kalra A (2018) Characterization of seven species of cyanobacteria for high-quality biomass production. Arab J Sci Eng 43(1):109–121

    Article  CAS  Google Scholar 

  • Pathak VV, Singh DP, Kothari R, Chopra AK (2014) Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa. Cell Mol Biol 60(5):35–40

    CAS  Google Scholar 

  • Perera I, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M (2018) Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Appl Microbiol Biotechnol 102(17):7351–7363

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  Google Scholar 

  • Pourjamshidian R, Abolghasemi H, Esmaili M, Amrei HD, Parsa M, Rezaei S (2019) Carbon dioxide biofixation by Chlorella sp. in a bubble column reactor at different flow rates and CO2 concentrations. Braz J Chem Eng 36(2):639–645

    Article  CAS  Google Scholar 

  • Radjenovic J, Petrovic M, Barcelo D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841

    Article  CAS  Google Scholar 

  • Rai A, Wadhwa GK, Chakrabarty J, Dutta S (2020) Application of cyanobacterial consortium to remove ammoniacal-N, phenol, and nitrate from synthetic coke-oven wastewater as tertiary treatment. J Environ Eng 146(7):04020062

    Article  CAS  Google Scholar 

  • Rai J, Kumar D, Pandey LK, Yadav A, Gaur JP (2016) Potential of cyanobacterial biofilms in phosphate removal and biomass production. J Environ Manag 177:138–144

    Article  CAS  Google Scholar 

  • Raikova S, Smith-Baedorf H, Bransgrove R, Barlow O, Santomauro F, Wagner JL, Chuck CJ (2016) Assessing hydrothermal liquefaction for the production of bio-oil and enhanced metal recovery from microalgae cultivated on acid mine drainage. Fuel Process Technol 142:219–227

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Prasanna R, Ahluwalia AS (2014) Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. S Afr J Bot 90:137–145

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013a) Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water. Int J Phytoremediation 15:789–800

    Article  CAS  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013b) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25(5):1529–1537

    Article  CAS  Google Scholar 

  • Selvam GG, Baskaran R, Mohan PM (2011) Microbial diversity and bioremediation of distilleries effluent. J Res Biol 1(3):153–162

    Google Scholar 

  • Shankar AM, Henciya S, Malliga P (2013) Bioremediation of tannery effluent using fresh water cyanobacterium Oscillatoria annae with coir pith. Int J Environ Sci 3(6):1881–1890

    Google Scholar 

  • Sibi G (2014) Biosorption of arsenic by living and dried biomass of fresh water microalgae-potentials and equilibrium studies. J Bioremed Biodegr 5(6):249

    Google Scholar 

  • Sinaei M, Loghmani M, Bolouki M (2018) Application of biomarkers in brown algae (Cystoseria indica) to assess heavy metals (Cd, Cu, Zn, Pb, Hg, Ni, Cr) pollution in the northern coasts of the Gulf of Oman. Ecotoxicol Environ Saf 164:675–680

    Article  CAS  Google Scholar 

  • Singh AK, Sharma N, Farooqi H, Abdin MZ, Mock T, Kumar S (2017) Phycoremediation of municipal wastewater by microalgae to produce biofuel. Int J Phytoremediation 19(9):805–812

    Article  CAS  Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernández FA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67(4):465–475

    Article  CAS  Google Scholar 

  • Solanki P, Dotaniya ML, Khanna N, Udayakumar S, Dotaniya CK, Meena SS, Srivastava RK (2019) Phycoremediation of industrial effluents contaminated soils. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Netherlands, pp 245–258

    Chapter  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  Google Scholar 

  • Sood A, Renuka N, Prasanna R, Ahluwalia AS (2015) Cyanobacteria as potential options for wastewater treatment. In: Phytoremediation. Springer, Cham, pp 83–93

    Chapter  Google Scholar 

  • Souza PO, Ferreira LR, Pires NRX, Filho PJS, Duarte FA, Pereira CMP, Mesko MF (2012) Algae of economic importance that accumulate cadmium and lead: a review. Braz J Pharmacognosy 22:825–837

    Article  CAS  Google Scholar 

  • Starckx S (2012) A place in the sun—algae is the crop of the future, according to researchers in Geel, Flanders today. http://www.flanderstoday.eu/content/place-sun

  • Su Y, Mennerich A, Urbana B (2012) Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour Technol 105:67–73

    Article  CAS  Google Scholar 

  • Uddin A, Lall AM (2019) Phycoremediation of heavy metals by Botryococus brurauni from wastewater. Biosci Biotechnol Res Asia 16(1):129–133

    Article  Google Scholar 

  • Vijayakumar S, Thajuddin N, Manoharan C (2007) Biodiversity of cyanobacteria in industrial effluents. Acta Bot Malacitana 32:27–34

    Article  Google Scholar 

  • Warjri SM, Syiem MB (2018) Analysis of biosorption parameters, equilibrium isotherms and thermodynamic studies of chromium (VI) uptake by a Nostoc sp. isolated from a coal mining site in Meghalaya, India. Mine Water Environ 37(4):713–723

    Article  CAS  Google Scholar 

  • Yang J, Cao J, **ng G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    Article  CAS  Google Scholar 

  • Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci: Processes Impacts 16(8):2018–2027

    Article  CAS  Google Scholar 

  • Zinicovscaia I, Cepoi L (eds) (2016) Cyanobacteria for bioremediation of wastewaters. Springer International Publishing, Berlin

    Google Scholar 

Download references

Acknowledgments

Dr. Simranjeet Singh is thankful to the Interdisciplinary Center for Water Research (IcWaR), Indian Institute of Sciences, Bangalore for the financial assistance, IOE-IIsc Fellowship (Sr. No: IE/REAC-20-0134), and providing laboratory and library facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joginder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. et al. (2021). Phycoremediation of Wastewater. In: Rastogi, R.P. (eds) Ecophysiology and Biochemistry of Cyanobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-16-4873-1_13

Download citation

Publish with us

Policies and ethics

Navigation