Role of Polymeric Nanomaterial in Regenerative Medicine and Stem Cell Biology

  • Chapter
  • First Online:
Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery

Abstract

The combination of nanoparticles (NPs) and stem cells have been extensively investigated in regenerative medicine. Different types of NPs have been designed using various strategies that work very proficiently in controlling the differentiation of stem cells, delivery of therapeutics, and real-time tracking of the transplanted cells, opening new vistas for regenerative medicine. Especially, polymeric NPs have emerged as the game changers, fulfilling the gaps left by many organic and inorganic NPs when it comes to biocompatibility, biodegradability, stability, immune response, invariably enhanced blood circulation time, and economical synthesis. Over the years, novel smart polymeric NPs have also proven themselves to be excellent candidates for targeted delivery of cargo and achieving sustained release. This chapter summarizes the various applicability of polymeric NPs in different areas of stem cells, redefining the regenerative medicine for a better tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  2. Sriramoju B, Kanwar RK, Kanwar JR (2014) Nanomedicine based nanoparticles for neurological disorders. Curr Med Chem 21(36):4154–4168

    Article  CAS  PubMed  Google Scholar 

  3. Mu Q, Yan B (2019) Editorial: Nanoparticles in cancer therapy-novel concepts, mechanisms, and applications. Front Pharmacol. https://doi.org/10.3389/fphar.2018.01552/full

  4. Torrieri G, Fontana F, Figueiredo P, Liu Z, Ferreira MPA, Talman V et al (2020) Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale 12(4):2350–2358

    Article  CAS  PubMed  Google Scholar 

  5. Ni J-S, Li Y, Yue W, Liu B, Li K (2020) Nanoparticle-based cell trackers for biomedical applications. Theranostics 10(4):1923–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, Barthès J, Bat E, Tezcaner A, Vrana NE (2019) Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol 7:113

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abdal Dayem A, Lee SB, Cho SG (2018) The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials 8(10):761

    Article  PubMed Central  CAS  Google Scholar 

  8. Zhou X, Yuan L, Wu C, Chen C, Luo G, Deng J et al (2018) Recent review of the effect of nanomaterials on stem cells. RSC Adv 8(32):17656–17676

    Article  CAS  Google Scholar 

  9. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D et al (2015) Safety of nanoparticles in medicine. Curr Drug Targets 16(14):1671–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Appl Nanotechnol Drug Deliv 25:257–310

    Google Scholar 

  11. Sailaja AK (2018) A review on biomedical applications of polymeric nanoparticles. Drug Design Intellect Prop Int J 3

    Google Scholar 

  12. Sabliov CM, Astete CE (2008) Encapsulation and controlled release of antioxidants and vitamins. In: Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, Sawston, UK, pp 297–330

    Chapter  Google Scholar 

  13. Csaba N, Caamaño P, Sánchez A, Domínguez F, Alonso MJ (2005) PLGA:poloxamer and PLGA:poloxamine blend nanoparticles: new carriers for gene delivery. Biomacromolecules 6(1):271–278

    Article  CAS  PubMed  Google Scholar 

  14. **cheng W, **aoyu Z, Sihao C (2010) Preparation and properties of nanocapsulated capsaicin by complex coacervation method. Chem Eng Commun 197(7):919–933

    Article  CAS  Google Scholar 

  15. Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25(4):357–367

    Article  PubMed  CAS  Google Scholar 

  16. Pinto Reis C, Neufeld RJ, Ribeiro António J, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21

    Article  CAS  Google Scholar 

  17. Watnasirichaikul S, Davies NM, Rades T, Tucker IG (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 17(6):684–689

    Article  CAS  PubMed  Google Scholar 

  18. Krishnaswamy K, Orsat V (2017) Sustainable delivery systems through green nanotechnology. In: Nano- and microscale drug delivery systems. Elsevier, Amsterdam, pp 17–32

    Chapter  Google Scholar 

  19. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoha KS, Priyadarshini SR, Moses JA, Anandharamakrishnan C (2020) Surface modification of bio-polymeric nanoparticles and its applications. In: Green nanomaterials. Springer, Singapore, pp 261–282

    Chapter  Google Scholar 

  21. Laurencin CT, Ambrosio AM, Borden MD, Cooper JA (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46

    Article  CAS  PubMed  Google Scholar 

  22. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003

    Article  CAS  PubMed  Google Scholar 

  23. Laurencin CT, Kumbar SG, Deng M, James R (2010) Nano-structured scaffolds for regenerative engineering. In: Honorary series in translational research in biomaterials, 2010 AICHE annual meeting, Salt Lake City, Utah, USA

    Google Scholar 

  24. Abraham S, Eroshenko N, Rao RR (2009) Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med 4(4):561–578

    Article  CAS  PubMed  Google Scholar 

  25. Tang X, Thankappan SK, Lee P, Fard SE, Harmon MD, Tran K, Yu X (2014) Polymeric biomaterials in tissue engineering and regenerative medicine. In: Natural and synthetic biomedical polymers. Elsevier, Amsterdam, pp 351–371

    Chapter  Google Scholar 

  26. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42(3):1147–1235

    Article  CAS  PubMed  Google Scholar 

  27. Hudson D, Margaritis A (2014) Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit Rev Biotechnol 34(2):161–179

    Article  CAS  PubMed  Google Scholar 

  28. Elsabahy M, Heo GS, Lim S-M, Sun G, Wooley KL (2015) Polymeric nanostructures for imaging and therapy. Chem Rev 115(19):10967–11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana NE et al (2016) Hyaluronic acid and its derivatives in coating and delivery systems: applications in tissue engineering, regenerative medicine and immunomodulation. Adv Healthc Mater 5(22):2841–2855

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira JM, Kotobuki N, Marques AP, Pirraco RP, Benesch J, Hirose M et al (2008) Surface engineered carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles for intracellular targeting. Adv Funct Mater 18(12):1840–1853

    Article  CAS  Google Scholar 

  31. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24(2):426–433

    Article  PubMed  Google Scholar 

  32. Bharadwaz A, Jayasuriya AC (2020) Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 110:110698

    Article  CAS  Google Scholar 

  33. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408

    Article  PubMed  PubMed Central  Google Scholar 

  34. BaoLin G, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wu G, Feng C, Hui G, Wang Z, Tan J, Luo L et al (2016) Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydr Polym 138:49–58

    Article  CAS  PubMed  Google Scholar 

  36. Shao X-R, Lin S-Y, Peng Q, Shi S-R, Li X-L, Zhang T et al (2017) Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomed Nanotechnol Biol Med 13(5):1809–1819

    Article  CAS  Google Scholar 

  37. Shakir M, Zia I, Rehman A, Ullah R (2018) Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: bio-inspired nanocomposites for bone tissue engineering. Int J Biol Macromol 111:903–916

    Article  CAS  PubMed  Google Scholar 

  38. Oliveira JM, Sousa RA, Malafaya PB, Silva SS, Kotobuki N, Hirose M et al (2011) In vivo study of dendronlike nanoparticles for stem cells “tune-up”: from nano to tissues. Nanomed Nanotechnol Biol Med 7(6):914–924

    Article  CAS  Google Scholar 

  39. Moradikhah F, Doosti-Telgerd M, Shabani I, Soheili S, Dolatyar B, Seyedjafari E (2020) Microfluidic fabrication of alendronate-loaded chitosan nanoparticles for enhanced osteogenic differentiation of stem cells. Life Sci 254:117768

    Article  CAS  PubMed  Google Scholar 

  40. Lalzawmliana V, Anand A, Mukherjee P, Chaudhuri S, Kundu B, Nandi SK et al (2019) Marine organisms as a source of natural matrix for bone tissue engineering. Ceramics Int 45(2):1469–1481. http://drs.nio.org/drs/handle/2264/8114

    Article  CAS  Google Scholar 

  41. Patra C, Talukdar S, Novoyatleva T, Velagala SR, Mühlfeld C, Kundu B et al (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33(9):2673–2680

    Article  CAS  PubMed  Google Scholar 

  42. Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F et al (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules 10(6):1575–1583

    Article  CAS  PubMed  Google Scholar 

  43. Fitton JH (2011) Therapies from Fucoidan; Multifunctional marine polymers. Mar Drugs 9(10):1731–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho Y-S, Jung W-K, Kim J-A, Choi I-W, Kim S-K (2009) Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chem 116(4):990–994

    Article  CAS  Google Scholar 

  45. Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N (2018) Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 110:88–96

    Article  CAS  PubMed  Google Scholar 

  46. Ortega-Oller I, Padial-Molina M, Galindo-Moreno P, O’Valle F, Jódar-Reyes AB, Peula-García JM (2015) Bone regeneration from PLGA micro-nanoparticles. Biomed Res Int 2015:1–18

    Article  CAS  Google Scholar 

  47. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med 16(10):933–946

    Article  CAS  PubMed  Google Scholar 

  48. Gröninger O, Hess S, Mohn D, Schneider E, Stark W, Märsmann S et al (2020) Directing stem cell commitment by amorphous calcium phosphate nanoparticles incorporated in PLGA: relevance of the free calcium ion concentration. Int J Mol Sci 21(7):2627

    Article  PubMed Central  CAS  Google Scholar 

  49. Shirazi R, Shirazi-Adl A, Hurtig M (2008) Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41(16):3340–3348

    Article  CAS  PubMed  Google Scholar 

  50. Ng L-J, Wheatley S, Muscat GEO, Conway-Campbell J, Bowles J, Wright E et al (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev Biol 183(1):108–121

    Article  CAS  PubMed  Google Scholar 

  51. Mörner A, Douagi I, Forsell MNE, Sundling C, Dosenovic P, O’Dell S et al (2009) Human immunodeficiency virus type 1 env trimer immunization of macaques and impact of priming with viral vector or stabilized core protein. J Virol 83(2):540–551

    Article  PubMed  CAS  Google Scholar 

  52. Alatorre-Meda M, Rodríguez-Velázquez E, Rodríguez JR (2011) Polycation-mediated gene delivery: the physicochemical aspects governing the process. In: Non-viral gene therapy. InTech, London

    Google Scholar 

  53. Zeng X, Sun Y-X, Qu W, Zhang X-Z, Zhuo R-X (2010) Biotinylated transferrin/avidin/biotinylated disulfide containing PEI bioconjugates mediated p53 gene delivery system for tumor targeted transfection. Biomaterials 31(17):4771–4780

    Article  CAS  PubMed  Google Scholar 

  54. Kim J-H, Park JS, Yang HN, Woo DG, Jeon SY, Do H-J et al (2011) The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials 32(1):268–278

    Article  CAS  PubMed  Google Scholar 

  55. Ma B, Leijten JCH, Wu L, Kip M, van Blitterswijk CA, Post JN et al (2013) Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr Cartil 21(4):599–603

    Article  CAS  Google Scholar 

  56. Ha C-W, Park Y-B, Chung J-Y, Park Y-G (2015) Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a Minipig model. Stem Cells Transl Med 4(9):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bukchin A, Sanchez-Navarro M, Carrera A, Teixidó M, Carcaboso AM, Giralt E, Sosnik A (2020) Amphiphilic polymeric nanoparticles modified with a retro-enantio peptide shuttle target the brain of mice. Chem Mater 32(18):7679–7693

    Article  CAS  Google Scholar 

  58. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M et al (2013) Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev 113(3):1877–1903

    Article  CAS  PubMed  Google Scholar 

  59. Nieto M, Schuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29(2):401–413

    Article  CAS  PubMed  Google Scholar 

  60. Mohseni M, Shojaei S, Mehravi B, Mohammadi E (2020) Natural polymeric nanoparticles as a non-invasive probe for mesenchymal stem cell labelling. Artif Cells Nanomed Biotechnol 48(1):770–776

    Article  CAS  PubMed  Google Scholar 

  61. Wang W, Lu K, Yu C, Huang Q, Du Y-Z (2019) Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol 17(1):82

    Article  CAS  Google Scholar 

  62. Mirnejad R, Mofazzal Jahromi MA, Al-Musawi S, Pirestani M, Fasihi Ramandi M, Ahmadi K et al (2014) Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iran J Biotechnol 12(3):1–8

    Article  Google Scholar 

  63. Feng R, Fu R, Duan Z, Zhu C, Ma X, Fan D et al (2018) Preparation of sponge-like macroporous PVA hydrogels via n-HA enhanced phase separation and their potential as wound dressing. J Biomater Sci Polym Ed 29(12):1463–1481

    Article  CAS  PubMed  Google Scholar 

  64. Zheng Y, Liang Y, Zhang D, Sun X, Liang L, Li J et al (2018) Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS Omega 3(5):4766–4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koudehi MF, Zibaseresht R (2020) Synthesis of molecularly imprinted polymer nanoparticles containing gentamicin drug as wound dressing based polyvinyl alcohol/gelatin nanofiber. Mater Technol 35(1):21–30

    Article  CAS  Google Scholar 

  66. Yang F, Cho S-W, Son SM, Bogatyrev SR, Singh D, Green JJ et al (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci 107(8):3317–3322

    Article  CAS  PubMed  Google Scholar 

  67. Shi Z, Neoh KG, Kang ET, Wang W (2006) Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27(11):2440–2449

    Article  CAS  PubMed  Google Scholar 

  68. Shrestha S, Diogenes A, Kishen A (2015) Temporal-controlled dexamethasone releasing chitosan nanoparticle system enhances odontogenic differentiation of stem cells from apical papilla. J Endod 41(8):1253–1258

    Article  PubMed  Google Scholar 

  69. Oliveira JM, Sousa RA, Kotobuki N, Tadokoro M, Hirose M, Mano JF et al (2009) The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 30(5):804–813

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira JM, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL et al (2010) Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 46(5):1424–1435

    Article  CAS  PubMed  Google Scholar 

  71. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2012) Precipitation of nanohydroxyapatite on PLLA/PBLG/collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage. Biomaterials 33(3):846–855

    Article  CAS  PubMed  Google Scholar 

  72. Lai G-J, Shalumon KT, Chen S-H, Chen J-P (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297

    Article  CAS  PubMed  Google Scholar 

  73. Park JS, Yang HN, Woo DG, Jeon SY, Do H-J, Lim H-Y et al (2011) Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials 32(14):3679–3688

    Article  CAS  PubMed  Google Scholar 

  74. Huang S, Song X, Li T, **ao J, Chen Y, Gong X et al (2017) Pellet coculture of osteoarthritic chondrocytes and infrapatellar fat pad-derived mesenchymal stem cells with chitosan/hyaluronic acid nanoparticles promotes chondrogenic differentiation. Stem Cell Res Ther 8(1):264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30(13):2625–2631

    Article  CAS  PubMed  Google Scholar 

  76. Li X, Tzeng SY, Liu X, Tammia M, Cheng Y-H, Rolfe A et al (2016) Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain. Biomaterials 84:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tzeng SY, Green JJ (2013) Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv Healthc Mater 2(3):468–480

    Article  CAS  PubMed  Google Scholar 

  78. Santos T, Ferreira R, Maia J, Agasse F, Xapelli S, Cortes L et al (2012) Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS Nano 6(12):10463–10474

    Article  CAS  PubMed  Google Scholar 

  79. Seo HI, Cho A-N, Jang J, Kim D-W, Cho S-W, Chung BG (2015) Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomed Nanotechnol Biol Med 11(7):1861–1869

    Article  CAS  Google Scholar 

  80. Stephanopoulos N, Freeman R, North HA, Sur S, Jeong SJ, Tantakitti F et al (2015) Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett 15(1):603–609

    Article  CAS  PubMed  Google Scholar 

  81. Pulavendran S, Rose C, Mandal AB (2011) Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnol 9(1):15

    Article  CAS  Google Scholar 

  82. Zahiri M, Khanmohammadi M, Goodarzi A, Ababzadeh S, Sagharjoghi Farahani M, Mohandesnezhad S et al (2020) Encapsulation of curcumin loaded chitosan nanoparticle within poly(ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol 153:1241–1250

    Article  CAS  PubMed  Google Scholar 

  83. He L, Gu J, Lim LY, Yuan ZX, Mo J (2016) Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol 7:313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Bhatt PC, Verma A, Al-Abbasi FA, Anwar F, Kumar V, Panda BP (2017) Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int J Nanomedicine 12:8749–8768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vissers C, Ming G, Song H (2019) Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev 148:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pandey SK, Patel DK, Thakur R, Mishra DP, Maiti P, Haldar C (2015) Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int J Biol Macromol 75:521–529

    Article  CAS  PubMed  Google Scholar 

  87. Yang N, Jiang Y, Zhang H, Sun B, Hou C, Zheng J et al (2015) Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis. Mol Pharm 12(1):232–239

    Article  CAS  PubMed  Google Scholar 

  88. Li S-Y, Sun R, Wang H-X, Shen S, Liu Y, Du X-J et al (2015) Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release 205:7–14

    Article  CAS  PubMed  Google Scholar 

  89. Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17(3):247–289

    Article  CAS  PubMed  Google Scholar 

  90. Rambhia KJ, Ma PX (2015) Controlled drug release for tissue engineering. J Control Release 219:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gao J, Liu J, **e F, Lu Y, Yin C, Shen X (2019) Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomedicine 14:9199–9216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Das S, Mukherjee P, Chatterjee R, Jamal Z, Chatterji U (2019) Enhancing chemosensitivity of breast cancer stem cells by downregulating SOX2 and ABCG2 using wedelolactone-encapsulated nanoparticles. Mol Cancer Ther 18(3):680–692

    Article  CAS  PubMed  Google Scholar 

  93. Verma RK, Yu W, Shrivastava A, Shankar S, Srivastava RK (2016) α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (Kras G12D, and Kras G12D/tp53R270H) mice. Sci Rep 6(1):32743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang H, Agarwal P, Zhao S, Xu RX, Yu J, Lu X et al (2015) Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 72:74–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-Niya H, Omidi Y (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 38(6):2110–2136

    Article  PubMed  Google Scholar 

  96. Sykes EA, Chen J, Zheng G, Chan WCW (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8(6):5696–5706

    Article  CAS  PubMed  Google Scholar 

  97. Rao W, Wang H, Han J, Zhao S, Dumbleton J, Agarwal P et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9(6):5725–5740

    Article  CAS  PubMed  Google Scholar 

  98. Wang T, Hou J, Su C, Zhao L, Shi Y (2017) Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol 15(1):7

    Article  CAS  Google Scholar 

  99. Ke X-Y, Lin Ng VW, Gao S-J, Tong YW, Hedrick JL, Yang YY (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35(3):1096–1108

    Article  CAS  PubMed  Google Scholar 

  100. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7(4):597–615

    Article  CAS  PubMed  Google Scholar 

  101. Shen S, Du X-J, Liu J, Sun R, Zhu Y-H, Wang J (2015) Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release 208:14–24

    Article  CAS  PubMed  Google Scholar 

  102. Maitz MF, Sperling C, Wongpinyochit T, Herklotz M, Werner C, Seib FP (2017) Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells. Nanomed Nanotechnol Biol Med 13(8):2633–2642

    Article  CAS  Google Scholar 

  103. Wu P, Liu Q, Wang Q, Qian H, Yu L, Liu B et al (2018) Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int J Nanomedicine 13:5405–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Totten JD, Wongpinyochit T, Seib FP (2017) Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. J Drug Target 25(9–10):865–872

    Article  CAS  PubMed  Google Scholar 

  105. Perteghella S, Crivelli B, Catenacci L, Sorrenti M, Bruni G, Necchi V et al (2017) Stem cell-extracellular vesicles as drug delivery systems: new frontiers for silk/curcumin nanoparticles. Int J Pharm 520(1):86–97

    Article  CAS  PubMed  Google Scholar 

  106. Mathiasen AB, Kastrup J (2013) Non-invasive in-vivo imaging of stem cells after transplantation in cardiovascular tissue. Theranostics 3(8):561–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang Y, Xu C, Ow H (2013) Commercial nanoparticles for stem cell labeling and tracking. Theranostics 3(8):544–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Bhirde A, **e J, Swierczewska M, Chen X (2011) Nanoparticles for cell labeling. Nanoscale 3(1):142–153

    Article  CAS  PubMed  Google Scholar 

  109. Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578

    Article  CAS  PubMed  Google Scholar 

  110. Yin C, Zhen X, Fan Q, Huang W, Pu K (2017) Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano 11(4):4174–4182

    Article  CAS  PubMed  Google Scholar 

  111. Yin C, Zhen X, Zhao H, Tang Y, Ji Y, Lyu Y et al (2017) Amphiphilic semiconducting oligomer for near-infrared photoacoustic and fluorescence imaging. ACS Appl Mater Interfaces 9(14):12332–12339

    Article  CAS  PubMed  Google Scholar 

  112. Sun T, Dou J-H, Liu S, Wang X, Zheng X, Wang Y et al (2018) Second near-infrared conjugated polymer nanoparticles for photoacoustic imaging and photothermal therapy. ACS Appl Mater Interfaces 10(9):7919–7926

    Article  CAS  PubMed  Google Scholar 

  113. Qin X, Chen H, Yang H, Wu H, Zhao X, Wang H et al (2018) Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Adv Funct Mater 28(1):1704939

    Article  PubMed  CAS  Google Scholar 

  114. Yin C, Wen G, Liu C, Yang B, Lin S, Huang J et al (2018) Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano 12(12):12201–12211

    Article  CAS  PubMed  Google Scholar 

  115. Mahara A, Kobayashi N, Hirano Y, Yamaoka T (2019) Sonoporation-based labeling of mesenchymal stem cells with polymeric MRI contrast agents for live-cell tracking. Polym J 51(7):685–692

    Article  CAS  Google Scholar 

  116. Lu L, Wang Y, Cao M, Chen M, Lin B, Duan X et al (2017) A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Adv 7(25):15041–15052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shakeel, A., Dash, S., Kumar, V.K., Mohanty, S. (2022). Role of Polymeric Nanomaterial in Regenerative Medicine and Stem Cell Biology. In: Dash, M. (eds) Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-4566-2_4

Download citation

Publish with us

Policies and ethics

Navigation