Biomimetic via Exosome Mimetics in Regenerative Medicine and Therapeutics

  • Chapter
  • First Online:
Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery
  • 331 Accesses

Abstract

Over the years, the field of regenerative medicine and therapeutics has witnessed several modifications in terms of the delivery vehicle used and their complex engineering to achieve the targeted drug/cargo delivery. The intention to gain enhanced accuracy in the therapeutic usages is the major reason behind the change. The use of synthetic nanomaterials had gained momentum during the past few decades. However, due to the issues involved like poor biocompatibility, cytotoxicity, stability, etc. their use has been limited. That is why the modern day therapeutics has shifted its gear towards a more natural option of delivery system, which is termed as biomimetic. There are several options nowadays for the biomimetic cargo delivery vehicles which are summarized briefly in this chapter with a major focus towards exosomes has been given. Starting from their synthesis methods to their contribution in modern day medicine has been described briefly. Also a comparative analysis has been done among these nanosystems to prove the superiority of exosomes above all. Towards the end, the current challenges involved in these formulations have been depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65(1):21–23

    Article  CAS  PubMed  Google Scholar 

  2. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 50(3):247–254

    Article  CAS  PubMed  Google Scholar 

  3. Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q (2018) NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 178:302–316

    Article  CAS  PubMed  Google Scholar 

  4. Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942

    Article  CAS  PubMed  Google Scholar 

  5. Johnstone RM (1992) The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins. Biochem Cell Biol 70(3–4):179–190

    Article  CAS  PubMed  Google Scholar 

  6. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF, Wang XZ (2015) Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015:657086

    PubMed  PubMed Central  Google Scholar 

  7. Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, Huang N-P, **ao Z-D, Lu Z-H, Tannous BA, Gao J (2018) Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150:137–149

    Article  CAS  PubMed  Google Scholar 

  8. Qin Y, Sun R, Wu C, Wang L, Zhang C (2016) Exosome: a novel approach to stimulate bone regeneration through regulation of osteogenesis and angiogenesis. Int J Mol Sci 17(5):712

    Article  PubMed Central  CAS  Google Scholar 

  9. Petho A, Chen Y, George A (2018) Exosomes in extracellular matrix bone biology. Curr Osteoporos Rep 16(1):58–64

    Article  PubMed  PubMed Central  Google Scholar 

  10. Armstrong JPK, Stevens MM (2018) Strategic design of extracellular vesicle drug delivery systems. Adv Drug Deliv Rev 130:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V, Daglia M (2018) Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 36(1):328–334

    Article  CAS  PubMed  Google Scholar 

  12. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208

    Article  CAS  PubMed  Google Scholar 

  13. György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger É, Pap E, Kittel Á, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    Article  PubMed  CAS  Google Scholar 

  15. Kowal J, Tkach M, Théry C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125

    Article  CAS  PubMed  Google Scholar 

  16. Abels ER, Breakefield XO (2016) Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 36(3):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  18. El Andaloussi S, Mäger I, Breakefield XO, Wood MJA (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  CAS  Google Scholar 

  19. Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1(1):801–832

    Article  CAS  Google Scholar 

  20. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65(1):36–48

    Article  CAS  PubMed  Google Scholar 

  21. Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321

    Article  CAS  PubMed  Google Scholar 

  22. Alavi M, Karimi N, Safaei M (2017) Application of various types of liposomes in drug delivery systems. Adv Pharm Bull 7(1):3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH (2020) Recent strategies towards the surface modification of liposomes: an innovative approach for different clinical applications. 3 Biotech 10(4):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nag OK, Awasthi V (2013) Surface engineering of liposomes for stealth behavior. Pharmaceutics 5(4):542–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jølck RI, Feldborg LN, Andersen S, Moghimi SM, Andresen TL (2010) Engineering liposomes and nanoparticles for biological targeting. In: Biofunctionalization of polymers and their applications, vol 125. Springer, Berlin, pp 251–280

    Chapter  Google Scholar 

  27. Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z (2018) Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci 19(1):195

    Article  PubMed Central  CAS  Google Scholar 

  28. Monteiro N, Martins A, Reis RL, Neves NM (2014) Liposomes in tissue engineering and regenerative medicine. J R Soc Interface 11(101):20140459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Weiner N, Martin F, Riaz M (1989) Liposomes as a drug delivery system. Drug Dev Ind Pharm 15(10):1523–1554

    Article  CAS  Google Scholar 

  30. Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA (2018) Liposomal drug delivery systems and anticancer drugs. Molecules 23(4):907

    Article  PubMed Central  CAS  Google Scholar 

  31. Has C, Sunthar P (2020) A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 30(4):336–365

    Article  CAS  PubMed  Google Scholar 

  32. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  PubMed  Google Scholar 

  33. Bangham AD, De Gier J, Greville GD (1967) Osmotic properties and water permeability of phospholipid liquid crystals. Chem Phys Lipids 1(3):225–246

    Article  CAS  Google Scholar 

  34. Dua J, Rana A, Bhandari AJIJ (2012) Liposome: methods of preparation and applications. Int J Pharm Stud Res 3(2):14–20

    Google Scholar 

  35. Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9(1):467–508

    Article  CAS  PubMed  Google Scholar 

  36. Pons M, Foradada M, Estelrich J (1993) Liposomes obtained by the ethanol injection method. Int J Pharm 95(1):51–56

    Article  CAS  Google Scholar 

  37. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H (2010) Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 20(3):228–243

    Article  CAS  PubMed  Google Scholar 

  38. Deamer D, Bangham AD (1976) Large volume liposomes by an ether vaporization method. Biochim Biophys Acta Nucleic Acids Protein Synth 443(3):629–634

    Article  CAS  Google Scholar 

  39. Deamer DW (1978) Preparation and properties of ether-injection liposomes. Ann N Y Acad Sci 308(1):250–258

    Article  CAS  PubMed  Google Scholar 

  40. Ollivon M, Lesieur S, Grabielle-Madelmont C, Paternostre MT (2000) Vesicle reconstitution from lipid–detergent mixed micelles. Biochim Biophys Acta Biomembranes 1508(1):34–50

    Article  CAS  Google Scholar 

  41. Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJA (1986) Preparation of liposomes via detergent removal from mixed micelles by dilution. Pharm Weekbl 8(5):259–265

    Article  CAS  Google Scholar 

  42. Liu G, Hou S, Tong P, Li J (2020) Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Crit Rev Anal Chem:1–21

    Google Scholar 

  43. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    Article  CAS  PubMed  Google Scholar 

  44. van Swaay D, deMello A (2013) Microfluidic methods for forming liposomes. Lab Chip 13(5):752–767

    Article  PubMed  CAS  Google Scholar 

  45. Shah VM, Nguyen DX, Patel P, Cote B, Al-Fatease A, Pham Y, Huynh MG, Woo Y, Alani AWG (2019) Liposomes produced by microfluidics and extrusion: a comparison for scale-up purposes. Nanomedicine 18:146–156

    Article  CAS  PubMed  Google Scholar 

  46. Tan S, Wu T, Zhang D, Zhang Z (2015) Cell or cell membrane-based drug delivery systems. Theranostics 5(8):863–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA (2018) Nanomaterial preparation by extrusion through nanoporous membranes. Small 14(18):1703493

    Article  CAS  Google Scholar 

  48. Pierigè F, Serafini S, Rossi L, Magnani M (2008) Cell-based drug delivery. Adv Drug Deliv Rev 60(2):286–295

    Article  PubMed  CAS  Google Scholar 

  49. Goh WJ, Lee CK, Zou S, Woon EC, Czarny B, Pastorin G (2017) Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int J Nanomedicine 12:2759–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. **a Q, Zhang Y, Li Z, Hou X, Feng N (2019) Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 9(4):675–689

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ak G, Hamarat Şanlıer Ş (2020) Erythrocyte membrane vesicles coated biomimetic and targeted doxorubicin nanocarrier: development, characterization and in vitro studies. J Mol Struct 1205:127664

    Article  CAS  Google Scholar 

  52. Malhotra S, Dumoga S, Sirohi P, Singh N (2019) Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl Mater Interfaces 11(25):22141–22151

    Article  CAS  PubMed  Google Scholar 

  53. Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K (2018) Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 8(1):3945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dash P, Piras AM, Dash M (2020) Cell membrane coated nanocarriers - an efficient biomimetic platform for targeted therapy. J Control Release 327:546–570

    Article  CAS  PubMed  Google Scholar 

  55. Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220:600–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Z, Hu S, Cheng K (2018) Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 6(45):7354–7365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, O’Connor DE, Zhang L (2014) Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14(4):2181–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan Z, Li PY, Deng J, Bady SC, Cheng H (2018) Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res 11(10):5573–5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou H, Fan Z, Lemons PK, Cheng H (2016) A facile approach to functionalize cell membrane-coated nanoparticles. Theranostics 6(7):1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Narain A, Asawa S, Chhabria V, Patil-Sen Y (2017) Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine (Lond) 12(21):2677–2692

    Article  CAS  Google Scholar 

  61. Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman MD, Singh S, Singh AP (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep 9(1):5335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dash M, Palaniyandi K, Ramalingam S, Sahabudeen S, Raja NS (2020) Exosomes isolated from two different cell lines using three different isolation techniques show variation in physical and molecular characteristics. bioRxiv. 2020.06.06.122952

    Google Scholar 

  63. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  CAS  PubMed  Google Scholar 

  64. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 30(1):3.22.1–3.22.29

    Google Scholar 

  65. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7(3):789–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshida T, Ishidome T, Hanayama R (2017) High purity isolation and sensitive quantification of extracellular vesicles using affinity to TIM4. Curr Protoc Cell Biol 77(1):3.45.1–3.45.18

    Google Scholar 

  67. Lobb RJ, Becker M, Wen Wen S, Wong CSF, Wiegmans AP, Leimgruber A, Möller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4(1):27031

    Article  PubMed  Google Scholar 

  68. Simpson RJ, Lim JWE, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6(3):267–283

    Article  CAS  PubMed  Google Scholar 

  69. Zeringer E, Barta T, Li M, Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harbor Protoc 2015(4):pdb.top074476

    Article  Google Scholar 

  70. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int 2018:8545347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ludwig N, Razzo BM, Yerneni SS, Whiteside TL (2019) Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Exp Cell Res 378(2):149–157

    Article  CAS  PubMed  Google Scholar 

  72. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol (Clifton, N.J.) 1295:179–209

    Article  CAS  Google Scholar 

  73. Gupta S, Rawat S, Arora V, Kottarath SK, Dinda AK, Vaishnav PK, Nayak B, Mohanty S (2018) An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Ther 9(1):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Böing AN, van der Pol E, Grootemaat AE, Coumans FAW, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3(1):23430

    Article  Google Scholar 

  75. Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, Möller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4:27031

    Article  PubMed  Google Scholar 

  76. Yu L-L, Zhu J, Liu J-X, Jiang F, Ni W-K, Qu L-S, Ni R-Z, Lu C-H, **ao M-B (2018) A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int 2018:3634563

    PubMed  PubMed Central  Google Scholar 

  77. Cho S, Yang HC, Rhee WJ (2020) Development and comparative analysis of human urine exosome isolation strategies. Process Biochem 88:197–203

    Article  CAS  Google Scholar 

  78. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PST, Star RA (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292(5):F1657–F1661

    Article  CAS  PubMed  Google Scholar 

  79. Shu SL, Yang Y, Allen CL, Hurley E, Tung KH, Minderman H, Wu Y, Ernstoff MS (2020) Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles 9(1):1692401

    Article  PubMed  CAS  Google Scholar 

  80. Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, Tran PHL, Chen C, Veedu RN, Wang T (2020) Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10(8):3684–3707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Coughlan C, Bruce KD, Burgy O, Boyd TD, Michel CR, Garcia-Perez JE, Adame V, Anton P, Bettcher BM, Chial HJ, Königshoff M, Hsieh EWY, Graner M, Potter H (2020) Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol 88(1):e110

    CAS  PubMed  PubMed Central  Google Scholar 

  82. García-Romero N, Madurga R, Rackov G, Palacín-Aliana I, Núñez-Torres R, Asensi-Puig A, Carrión-Navarro J, Esteban-Rubio S, Peinado H, González-Neira A, González-Rumayor V, Belda-Iniesta C, Ayuso-Sacido A (2019) Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med 17(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  83. Karttunen J, Heiskanen M, Navarro-Ferrandis V, Das Gupta S, Lipponen A, Puhakka N, Rilla K, Koistinen A, Pitkänen A (2019) Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. J Extracell Vesicles 8(1):1555410

    Article  CAS  PubMed  Google Scholar 

  84. Nath Neerukonda S, Egan NA, Patria J, Assakhi I, Tavlarides-Hontz P, Modla S, Muñoz ER, Hudson MB, Parcells MS (2019) Comparison of exosomes purified via ultracentrifugation (UC) and Total exosome isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods 263:1–9

    Article  CAS  PubMed  Google Scholar 

  85. Ryu KJ, Lee JY, Park C, Cho D, Kim SJ (2019) Isolation of small extracellular vesicles from human serum using a combination of ultracentrifugation with polymer-based precipitation. Ann Lab Med 40(3):253–258

    Article  PubMed Central  CAS  Google Scholar 

  86. Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, Oliva P, Villafani J, Navarro A, Blanco-López MC, Cernuda-Morollón E (2019) Characterization of plasma-derived extracellular vesicles isolated by different methods: a comparison study. Bioengineering (Basel) 6(1):8

    Article  CAS  Google Scholar 

  87. Soares Martins T, Catita J, Martins Rosa I, A B da Cruz e Silva O, Henriques AG (2018) Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 13(6):e0198820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Yang X-X, Sun C, Wang L, Guo X-L (2019) New insight into isolation, identification techniques and medical applications of exosomes. J Control Release 308:119–129

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, Liu Y, Liu H, Tang WH (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  90. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  91. Gulei D, Irimie AI, Cojocneanu-Petric R, Schultze JL, Berindan-Neagoe I (2018) Exosomes-small players, big sound. Bioconjug Chem 29(3):635–648

    Article  CAS  PubMed  Google Scholar 

  92. Logozzi M, Di Raimo R, Mizzoni D, Fais S (2020) Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol 645:155–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pedersen KW, Kierulf B, Manger I, Oksvold MP, Li M, Alex VE, Roos N, Kullmann A, Neurauter AJ (2015) Direct isolation of exosomes from cell culture: simplifying methods for exosome enrichment and analysis. Transl Biomed 6. https://doi.org/10.21767/2172-0479.100018

  94. Kyuno D, Zhao K, Bauer N, Ryschich E, Zöller M (2019) Therapeutic targeting cancer-initiating cell markers by exosome miRNA: efficacy and functional consequences exemplified for claudin7 and EpCAM. Transl Oncol 12(2):191–199

    Article  PubMed  Google Scholar 

  95. He L, Zhu D, Wang J, Wu X (2019) A highly efficient method for isolating urinary exosomes. Int J Mol Med 43(1):83–90

    CAS  PubMed  Google Scholar 

  96. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N, Nagy G, Mäger I, Wood MJ, El Andaloussi S, Pálinkás Z, Kumar V, Nagy P, Kittel Á, Buzás EI, Ferdinandy P, Giricz Z (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One 10(12):e0145686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Au-Jung MK, Au-Mun JY (2018) Sample preparation and imaging of exosomes by transmission electron microscopy. JoVE 131:e56482

    Google Scholar 

  98. Zabeo D, Cvjetkovic A, Lässer C, Schorb M, Lötvall J, Höög JL (2017) Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles 6(1):1329476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Emelyanov A, Shtam T, Kamyshinsky R, Garaeva L, Verlov N, Miliukhina I, Kudrevatykh A, Gavrilov G, Zabrodskaya Y, Pchelina S, Konevega A (2020) Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS One 15(1):e0227949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kesimer M, Gupta R (2015) Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods 87:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rupert DLM, Claudio V, Lässer C, Bally M (2017) Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subjects 1861(1 Part A):3164–3179

    Article  CAS  Google Scholar 

  102. Sokolova V, Ludwig A-K, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150

    Article  CAS  PubMed  Google Scholar 

  103. Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME (2019) Extracellular vesicle quantification and characterization: common methods and emerging approaches. Bioengineering (Basel) 6(1):7

    Article  CAS  PubMed Central  Google Scholar 

  104. de Rond L, Libregts SFWM, Rikkert LG, Hau CM, van der Pol E, Nieuwland R, van Leeuwen TG, Coumans FAW (2019) Refractive index to evaluate staining specificity of extracellular vesicles by flow cytometry. J Extracell Vesicles 8(1):1643671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hough KP, Deshane JS (2020) Cutting edge approaches for rapid characterization of airway exosomes. Methods 177:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H (2019) Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8(4):307

    Article  CAS  PubMed Central  Google Scholar 

  107. Jiao Y-J, ** D-D, Jiang F, Liu J-X, Qu L-S, Ni W-K, Liu Z-X, Lu C-H, Ni R-Z, Zhu J, **ao M-B (2019) Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J Cell Biochem 120(1):988–999

    Article  CAS  PubMed  Google Scholar 

  108. Peterka O, Jirásko R, Chocholoušková M, Kuchař L, Wolrab D, Hájek R, Vrána D, Strouhal O, Melichar B, Holčapek M (1865) Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim Biophys Acta Mol Cell Biol Lipids 2020(5):158634

    Google Scholar 

  109. Singhto N, Vinaiphat A, Thongboonkerd V (2019) Discrimination of urinary exosomes from microvesicles by lipidomics using thin layer liquid chromatography (TLC) coupled with MALDI-TOF mass spectrometry. Sci Rep 9(1):13834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, Chen CY, Hu Y, Zhang Y, Tan YJ, Yuan LQ, Chen TH, Liu HM, Cao J, Liu ZZ, Wang ZX, **e H (2019) Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale 11(43):20884–20892

    Article  CAS  PubMed  Google Scholar 

  111. Chen P, Zheng L, Wang Y, Tao M, **e Z, **a C, Gu C, Chen J, Qiu P, Mei S, Ning L, Shi Y, Fang C, Fan S, Lin X (2019) Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 9(9):2439–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wei F, Li M, Crawford R, Zhou Y, **ao Y (2019) Exosome-integrated titanium oxide nanotubes for targeted bone regeneration. Acta Biomater 86:480–492

    Article  CAS  PubMed  Google Scholar 

  113. Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, Dang R, Xu J, Zhang J, Wen N (2020) Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng 6(3):1590–1602

    Article  CAS  PubMed  Google Scholar 

  114. Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, **e Z, Wang Y (2016) Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 7(1):136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wang X, Ao J, Lu H, Zhao Q, Ma Y, Zhang J, Ren H, Zhang Y (2020) Osteoimmune modulation and guided osteogenesis promoted by barrier membranes incorporated with S-nitrosoglutathione (GSNO) and mesenchymal stem cell-derived exosomes. Int J Nanomedicine 15:3483–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gandolfi MG, Gardin C, Zamparini F, Ferroni L, Esposti MD, Parchi G, Ercan B, Manzoli L, Fava F, Fabbri P, Prati C, Zavan B (2020) Mineral-doped poly(L-lactide) acid scaffolds enriched with exosomes improve osteogenic commitment of human adipose-derived mesenchymal stem cells. Nanomaterials (Basel) 10(3):432

    Article  CAS  Google Scholar 

  117. Poh S, Chelvam V, Kelderhouse LE, Ayala-López W, Vaitilingam B, Putt KS, Low PS (2017) Folate-conjugated liposomes target and deliver therapeutics to immune cells in a rat model of rheumatoid arthritis. Nanomedicine (Lond) 12(20):2441–2451

    Article  CAS  Google Scholar 

  118. Gong T, Su X-T, **a Q, Wang J-G (2017) Biodegradable combinatorial drug loaded pH-sensitive liposomes for enhanced osteosarcoma therapeutics. J Biomater Tissue Eng 7(10):952–961

    Article  Google Scholar 

  119. Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK (2018) Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 19(1):166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoni Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samal, S., Dash, M. (2022). Biomimetic via Exosome Mimetics in Regenerative Medicine and Therapeutics. In: Dash, M. (eds) Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-16-4566-2_2

Download citation

Publish with us

Policies and ethics

Navigation