Physicochemical Components of Wheat Grain Quality and Advances in Their Testing Methods

  • Chapter
  • First Online:
New Horizons in Wheat and Barley Research

Abstract

Wheat is the second most important staple food crop after rice and is primarily consumed by the global population to meet its daily energy and protein requirements. Hexaploid, i.e. T. aestivum, and tetraploid, i.e. T. durum, are commonly used to make various end products. Different end products require different qualities. The quality required to make cookies may not be suitable for making bread. To differentiate the various class and quality of wheat, both physical and chemical parameters are of utmost importance. Physical parameters include grain appearance score, hectoliter weight, thousand-grain weight, yellow berry incidence, grain hardness, etc. Similarly, chemical parameters include ash and moisture, protein content, sedimentation value, gluten content, Fe and Zn content, HMW and LMW glutenin profile, yellow pigment, etc. The millers extensively use these parameters to decide the suitability of the wheat grains. Therefore, proper estimation and analysis of various quality parameters are essential in the milling and baking industry. In this chapter, we have discussed physical and chemical parameters and their testing methods and the various wheat classes used in the develo** world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AACC (1976) American Association of Cereal Chemists International. Approved methods (7th ed), Methods 08-01 and 44-16, Approved April 1961 and Method 46-12 Approved October 1976, St. Paul, MN

    Google Scholar 

  • AACC (2000) Method 38-12A, Approved Methods of the American Association of Cereal Chemists, 10th edn. The Association, St. Paul, MN

    Google Scholar 

  • Alessandroni A, Fortini S, Galterio G, Scaullettas D, D’egidio MG, Pezzali M (1976) Resistenza alia bianconaturva in relazione alle sintesi proteica nelle cariossidie all attevita nitrato reducttasica nelle foglie in Triticum durum. Genet Agrar 30:1 –18

    CAS  Google Scholar 

  • Ammiraju JS, Dholakia BB, Jawdekar G et al (2002) Inheritance and identification of DNA markers associated with yellow berry tolerance in wheat (Triticum aestivum L.). Euphytica 123(2):229–233

    CAS  Google Scholar 

  • Axford DWE, Mcdermott EE, Redman DG (1978) Small-scale rests of bread-making quality. Mill Feed Ferr 16l:18

    Google Scholar 

  • Betschart AA (1988) Nutritional quality of wheat products. In: Wheat: chemistry and technology. American Association of Cereal Chemists, St Paul, MN, pp 91–129

    Google Scholar 

  • Bilge G, Sezer B, Eseller KE, Berberoglu H, Koksel H, Boyaci IH (2016) Ash analysis of flour sample by using laser-induced breakdown spectroscopy. Spectrochim Acta B 124:74 –78

    CAS  Google Scholar 

  • Blackman JA, Gill AA (1980) A comparison of some small-scale tests for bread-making quality used in wheat breeding. J Agri Sci (Camb) 95:29

    Google Scholar 

  • Borrelli GM, De Leonardis AM, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involved in semolina colour. J Cereal Sci 48:494 –502

    CAS  Google Scholar 

  • Boss CH, Fredeen K (1997) Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry Perkin Elmer, USA

    Google Scholar 

  • Brandolini A, Hidalgo A, Moscaritol S (2008) Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) wholemeal flour. J Cereal Sci 47:599 –609

    CAS  Google Scholar 

  • CIE (1986) Publication 15.2 Colorimetry. Commission Internationale de l’Eclairage (CIE), Vienna

    Google Scholar 

  • Czaja T, Sobota A, Szostak R (2020) Quantification of ash and moisture in wheat flour by Raman spectroscopy. Foods 9:280 . https://doi.org/10.3390/foods9030280

    Article  CAS  PubMed Central  Google Scholar 

  • Dexter JE, Matuso RR, Kos Molak FG, Leisle D, Marchylo BA (1980) The suitability of the SDS-sedimentation test for assessing gluten strength in Durum wheat. Can J Plant Sci 60:25

    CAS  Google Scholar 

  • Dhaka V, Khatkar BS (2015) Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread-making potential of wheat varieties. J Food Qual 38:71 –82

    CAS  Google Scholar 

  • Dhaliwal HS, Singh D, Sekhon KS (1981) Relationship between yellow berry in durum and bread wheats and nitrogen fertilization of crop and protein content of grains. J Res Punjab Agric Univ 18:351 –358

    Google Scholar 

  • Digesù AM, Platani C, Cattivelli L, Mangini G, Blanco A (2009) Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50:210 –218

    Google Scholar 

  • Dua S, Lukow OM, Humphreys G, Adams K (2009) Effect of extraction methods and wheat cultivars on gluten functionality. Open Food Sci J 3:84 –92

    CAS  Google Scholar 

  • Edwards RA, Ross AS, Mares DJ, Ellison FW, Tomlinson JD (1989) Enzymes from rain-damaged wheat and laboratory germinated wheat. I. Effects on product quality. J Cereal Sci 10:157 –167

    CAS  Google Scholar 

  • Feist B, Sitko R (2018) Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem 249:38 –44

    CAS  PubMed  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381 –1387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrão MF, Davanzo CU (2005) Horizontal attenuated total reflection applied to the simultaneous determination of ash and protein contents in commercial wheat flour. Anal Chim Act 540:411 –415

    Google Scholar 

  • Figueroa JDC, Maucher T, Reule W, Pena RJ (2009) Influence of high molecular weight glutenins on viscoelastic properties of the intact wheat kernel and relation to functional properties of wheat dough. Cereal Chem 86:139 –144

    CAS  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opinion Plant Biol 8:183 –187

    CAS  Google Scholar 

  • Hemery Y, Holopainen U, Lampi AM, Lehtinen P, Nurmi T, Piironen V, Edelmann M, Rouau X (2011) Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. J Cereal Sci 53:9 –18

    CAS  Google Scholar 

  • Kean EG, Bordenave N, Ejeta G, Hamaker BR, Ferruzzi MG (2011) Carotenoid bioaccessibility from whole grain and decorticated yellow endosperm sorghum porridge. J Cereal Sci 54:450 –459

    CAS  Google Scholar 

  • Kiszonas AM, Engle DA, Pierantoni LA, Morris CF (2018) Relationships between Falling Number, a-amylase activity, milling, cookie, and sponge cake quality of soft white wheat. Cereal Chem 95:373 –385

    CAS  Google Scholar 

  • Kozmin N (1933) Biochemical characteristics of dough and bread from sprouted grain. Cereal Chem 10:420 –436

    CAS  Google Scholar 

  • Kulkarni SD, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2006) Determination of elemental concentration profiles in tender wheatgrass (Triticum aestivum L.) using instrumental neutron activation analysis. Food Chem 95:699 –707

    CAS  Google Scholar 

  • Kumar A, Mantovani EE, Simsek S, Jain S, Elias EM, Mergoum M (2019) Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite × non-adapted bread wheat cross. PLoS One 14(9):e0221826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lachman J, Martinek P, Kotikova Z, Orsák M, Å ulc M (2017) Genetics and chemistry of pigments in wheat grain—a review. J Cereral Sci 74:145 –154

    CAS  Google Scholar 

  • Malik AH, Kuktaite R, Johansson E (2013) Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to bread-making quality. J Cereal Sci 57:170 –174

    CAS  Google Scholar 

  • Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167 –1178

    CAS  PubMed  Google Scholar 

  • Markiewicz-Keszycka M, Casado-Gavalda MP, Cama-Moncunill X, Cama-Moncunill R, Dixit Y, Cullen PJ, Sullivan C (2018) Laser-induced breakdown spectroscopy (LIBS) for rapid analysis of ash, potassium and magnesium in gluten free flours. Food Chem 244:324 –330

    CAS  PubMed  Google Scholar 

  • Martin CR, Rousser R, Brabec DL (1993) Development of a single-kernel wheat characterization system. Trans ASAE 36(5):1399–1404

    Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23 –36

    CAS  PubMed  Google Scholar 

  • Morgan BC, Dexter JE, Preston KR (2000) Relationship of kernel size to flour water absorption for Canada western red spring wheat. Cereal Chem 77(3):286–292

    CAS  Google Scholar 

  • Obert JC, Ridley WP, Schneider RW et al (2004) The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.). J Agric Food Chem 52:1375 –1384

    CAS  PubMed  Google Scholar 

  • Ohm JB, Chung OK, Deyoe CW (1998) Single-kernel characteristics of hard winter wheats in relation to milling and baking quality. Cereal Chem 75(1):156–161

    CAS  Google Scholar 

  • Pasikatan MC, Milliken GA, Steele JL, Spillman CK, Haque E (2001) Modeling the size properties of first-break ground wheat. Trans ASAE 44(6):1727–1737

    Google Scholar 

  • Payne PI, Corfield KG, Blackman JA (1979) Identification of a high-molecular-weight subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree. Theor Appl Genet 55:153 –159

    CAS  PubMed  Google Scholar 

  • Paznocht L, Kotikova Z, Orsak M, Lachman J, Martinek P (2019) Carotenoid changes of colored-grain wheat flours during bun-making. Food Chem 277:725 –734

    CAS  PubMed  Google Scholar 

  • Pearson TC, Brabec DL (2006) Camera attachment for automatic measurement of single-wheat kernel size on a perten skcs 4100. Appl Eng Agric 22(6):927–933

    Google Scholar 

  • Perten H (1964) Application of the falling number method for evaluating alpha-amylase activity. Cereal Chem 41:127 –140

    CAS  Google Scholar 

  • Piironen V, Salmenkallio-Marttila M (2009) Micronutrients and phytochemicals in wheat grain. In: WHEAT: chemistry and technology. American Association of Cereal Chemists, St Paul, MN, pp 179–222

    Google Scholar 

  • Poji M, Mastilovi J, Majce N (2012) The application of near infrared spectroscopy in wheat quality control. In: Infrared spectroscopy—life and biomedical sciences. InTechOpen, London, UK, pp 167–184

    Google Scholar 

  • Pozo AD, Matus I, Ruf K, Castillo D, Méndez-Espinoza AM, Serret MD (2019) Genetic advance of durum wheat under high yielding conditions: the case of Chile. Agronomy 9:454

    Google Scholar 

  • Quick JS, Donnelly MJ (1980) A rapid test for estimating durum wheat quality. Crop Sci 20:816

    Google Scholar 

  • Ram S, Narwal S, Gupta OP, Pandey V, Gupta RK, Singh GP (2018) Laboratory manual on methodologies for evaluation of wheat quality. ICAR-IIWBR, p 40

    Google Scholar 

  • Ross AS, Flowers MD, Zemetra RS, Kongraksawech T (2012) Effect of grain protein concentration on falling number of ungerminated soft white winter wheat. Cereal Chem 89:307 –310

    CAS  Google Scholar 

  • Sezer B, Bilge G, Sanal T, Koksel H, Boyaci IH (2017) A novel method for ash analysis in wheat milling fractions by using laser-induced breakdown spectroscopy. J Cereal Sci 78:33 –38

    CAS  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553

    CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) Genetics of wheat gluten proteins. Adv Genet 49:111 –184

    CAS  PubMed  Google Scholar 

  • Stankey J, Akbulut C, Romero J, Govindasamy-Lucey S (2015) Evaluation of X-ray fluorescence spectroscopy as a method for the rapid and direct determination of sodium in cheese. Am Dairy Sci Assoc 98:5040 –5051

    CAS  Google Scholar 

  • Sujka K, Koczon P, Ceglinska A, Reder M, Ciemniewska-Zytkiewicz H (2017) The application of FT-IR spectroscopy for quality control of flours obtained from polish producers. J Anal Methods Chem 3:1 –9

    Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311(5769):1886. https://doi.org/10.1126/science.1124635

    Article  CAS  PubMed  Google Scholar 

  • Thungo Z, Shimelis H, Odindo A, Mashilo J (2020) Grain quality of elite bread wheat genotypes under non-stress and drought-stress conditions. J Crop Improv 34(3):314–334

    Google Scholar 

  • Velu G, Kulkarni VN, Muralidharan V, Rai KN, Longvah T, Sahrawat KL, Raveendran TS (2006) A rapid Screening method for grain iron content in pearl millet. J SAT Agric Res. https://doi.org/10.3914/ICRISAT.0169

  • Vetrimani R, Sudha ML, Haridas Rao P (2005) Effect of extraction rate of wheat flour on the quality of vermicelli. Food Res Int 38:411 –416

    Google Scholar 

  • Wheal M, Fowles T, Palmer L (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal Methods 3:2854 –2863

    CAS  Google Scholar 

  • Williams P (2000) Applications of the Perten SKCS 4100 in flour milling. Association of Operative Miller Bulletin, Leawood, Kans. p 7421

    Google Scholar 

  • Yao M, Wang D, Zhao M (2015) Element analysis based on energy-dispersive X-ray fluorescence. Adv Mater Sci Eng 2015:290593 . https://doi.org/10.1155/2015/290593

    Article  CAS  Google Scholar 

  • Zeleny L (1947) A simple sedimentation test for estimating the bread baking and gluten qualities of wheat flour. Cer Chem 24:465 –475

    CAS  Google Scholar 

  • Zhang K, Wang J, Zhang L, Rong C, Zhao F et al (2013) Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply. PLoS One 8(3):e57853

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Gupta, O.P., Pandey, V., Ram, S., Kumar, S., Singh, G.P. (2022). Physicochemical Components of Wheat Grain Quality and Advances in Their Testing Methods. In: Kashyap, P.L., et al. New Horizons in Wheat and Barley Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-4449-8_28

Download citation

Publish with us

Policies and ethics

Navigation