Abiotic Stress Tolerance in Wheat: Physiological Interventions

  • Chapter
  • First Online:
New Horizons in Wheat and Barley Research

Abstract

The wheat cultivation across the globe is challenged with different abiotic stresses like drought, heat, salt, lodging, pre-harvest sprouting, etc. The breeding for abiotic stress tolerance is highly challenging due to large genotype by environment interactions. In recent years, in develo** countries like Australia, the physiological breeding is giving promising results in improving yield under abiotic stress. Physiological breeding generally includes the crossing of novel trait genotypes for significant improvement in yield and other abiotic stress tolerance. Identification of genotypes for superior traits involves application of precise phenoty** techniques and their validation under field conditions. The recent progress in phenoty** indicates that the physiological breeding has all the potential for improving grain under the present climate change and increasing abiotic stress area. We have high-yielding varieties and also advanced molecular tools for high-throughput science under abiotic stress scenario, but how to implement these in field is the major area of concern. Physiological interventions also provide a connecting link between the field problems (breeding) and lab solutions (biotechnology) and help in understanding the basis of various plant defence mechanisms. Also the gap between the expressed potential and hidden potential is a major future prospect which could also be resolved by physiological understanding of plant genotypes. Physiological tools provide insights for screening and identification of suitable and most adaptive genotypes under stress. Hence, here we discuss the importance of different abiotic stresses in wheat, the physiological responses in wheat under stresses, need for using physiological breeding, precise phenoty** methods used for screening under abiotic stresses, the validated traits associated with the specific abiotic stress and the promising genotypes identified for different abiotic stresses for efficient utilization in breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Moneim D, Alqahtani MM, Abdein MA, Germoush MO (2020) Drought and salinity stress response in wheat: physiological and TaNAC gene expression analysis in contrasting Egyptian wheat genotypes. J Plant Biotechnol 47:1–14. https://doi.org/10.5010/JPB.2020.47.1.001

    Article  Google Scholar 

  • Abdelghani C, Said W, Mouna L, Abderrahim F, Abdelhamid El M, Saad IK et al (2015) Physiological and biochemical traits of drought tolerance in Argania spinosa. J Plant Interact 10:252–261. https://doi.org/10.1080/17429145.2015.1068386

    Article  CAS  Google Scholar 

  • Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat – an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci 9:734. https://doi.org/10.3389/fpls.2018.00734

    Article  PubMed  PubMed Central  Google Scholar 

  • Acreche MM, Slafer GA (2011) Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Res 122(1):40–48

    Article  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147. https://doi.org/10.1038/nclimate2470

    Article  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Berry PM, Spink J (2012) Predicting yield losses caused by lodging in wheat. Field Crops Res 137:19–26

    Article  Google Scholar 

  • Berry PM, Griffin JM, Sylvester-Bradley R, Scott RK, Spink JH, Baker CJ et al (2000) Controlling plant form through husbandry to minimise lodging in wheat. Field Crops Res 67:59–81

    Article  Google Scholar 

  • Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ et al (2004) Understanding and reducing lodging in cereals. Adv Agron 84:217–271

    Article  Google Scholar 

  • Bewley JD, Black M (1982) Viability and longevity. In: Bewley JD, Black M (eds) Physiology and biochemistry of seeds in relation to germination. Springer, Berlin, pp 1–59. https://doi.org/10.1007/978-3-642-68643-6_1

    Chapter  Google Scholar 

  • Blum A, Pnuel Y (1990) Physiological attributes associated with drought resistance of wheat cultivars in a Mediterranean environment. Crop Pasture Sci 41:799–810

    Article  Google Scholar 

  • Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL et al (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1335–1346

    Article  Google Scholar 

  • Chaves MM, Maroco J, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi S et al (2013) The importance for food security of maintaining rust resistance in wheat. Food Secur 5:157–176

    Article  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  CAS  PubMed  Google Scholar 

  • CSSRI (1997) Vision 2020: CSSRI perspective plan. Central Soil Salinity Research Institute, Karnal, p 95

    Google Scholar 

  • Daryanto S, Wan L, Jacinthe PA (2016) Global synthesis of drought effects on maize and wheat production. PLoS One 11:e0156362. https://doi.org/10.1371/journal.pone.0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found 39(4):281–302

    Google Scholar 

  • DePauw RM, McCaig TN (1983) Recombining dormancy and white seed colour in a spring wheat cross. Can J Plant Sci 63:581–589

    Article  Google Scholar 

  • Din R, Subhani GM, Ahmad N, Hussain M, Rehman AU (2010) Effect of temperature on development and grain formation in spring wheat. Pak J Bot 42(2):899–906. https://doi.org/10.4172/2229-4473.1000212

    Article  Google Scholar 

  • Fakthongphan J, Graybosch RA, Baenziger PS (2016) Combining ability for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.). Crop Sci 56:1025–1035. https://doi.org/10.2135/cropsci2015.08.0490

    Article  CAS  Google Scholar 

  • FAO (2018a) Crop prospects and food situation. Quarterly global report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2018b) Food outlook: biannual report on global food markets. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2019) Food outlook - biannual report on global food markets – November 2019. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30(6):491–507

    Article  Google Scholar 

  • Fatima Z, Ahmed M, Hussain M et al (2020) The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci Rep 10:18013. https://doi.org/10.1038/s41598-020-74740-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA, Edmeades G (2010) Breeding and cereal yield progress. Crop Sci 50:S85–S98

    Article  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars-I: Grain yield responses. Aust J Agric Res 29(5):897–912

    Article  Google Scholar 

  • Fischer RA, Byerlee D, Edmeades G (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR monograph no. 158. Australian Centre for International Agricultural Research, Canberra, p xxii + 634

    Google Scholar 

  • Flintham JE (2000) Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res 10:43–50. https://doi.org/10.1017/S0960258500000052

    Article  Google Scholar 

  • Fofana B, Humphreys DG, Rasul G et al (2009) Map** quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat cross. Euphytica 165:509–521. https://doi.org/10.1007/s10681-008-9766-6

    Article  CAS  Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM et al (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    Article  CAS  PubMed  Google Scholar 

  • GCARD (2012) Breakout session P1.1 national food security – the wheat initiative – an international research initiative for wheat improvement context – the problems being addressed. In: Proceedings of the GCARD - Second global conference on agricultural research for development, Uruguay

    Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Groos C, Gay G, Perretant M-R, Gervais L, Bernard M, Dedryver F et al (2002) Study of the relationship between pre-harvest sprouting and grain colour by quantitative trait loci analysis in a white × grain bread-wheat cross. Theor Appl Genet 104:39–47. https://doi.org/10.1007/s001220200004

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Hafiz HR, Siddiqui MK, Islam R et al (2016) Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J Crop Sci Biotechnol 18:333–340. https://doi.org/10.1007/s12892-015-0064-2

    Article  Google Scholar 

  • Hasnath Karim MD, Jahan MA (2013) Study of lodging resistance and its associated traits in bread wheat. ARPN Res J Agric Biol Sci 8(10):1990–6145

    Google Scholar 

  • Huseynova IM (2012) Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought. Biochim Biophys Acta Bioenergetics 8:1516–1523. https://doi.org/10.1016/j.bbabio.2012.02.037

    Article  CAS  Google Scholar 

  • ICAR-IIWBR (2018) Progress report of AICRP on wheat and barley 2017–18. In: Chatrath R, Tiwari V, Singh G, Tiwari R, Tyagi BS, Gupta A et al (eds) Crop improvement. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, p 20

    Google Scholar 

  • ICAR-IIWBR (2020) Progress report of AICRP on wheat and barley 2019–20. In: Singh G, Tyagi BS, Gupta A, Singh SK, Khan H, Kumar S et al (eds) Crop improvement. ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, p 197

    Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, Van Ginkel M (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross derived wheat lines. Genetics 178:1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K et al (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Islam MS, Peng S, Visperas RM et al (2007) Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crops Res 101(2):240–248. https://doi.org/10.1016/j.fcr.2006.12.002

    Article  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J, Craufurd PQ (2010) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Singh GP, Yadav R, Pandey R, Ramya P, Shine MB, Pandey VC, Rai N, Jha J, Prabhu KV (2014) Root trait characteristics and genotypic response in wheat under different water regimes. Cereal Res Commun 42(3):426–438

    Article  Google Scholar 

  • Jerry LH, John HP (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Khobra R, Sareen S, Meena BK, Kumar A, Tiwari V, Singh GP (2019) Exploring the traits for lodging tolerance in wheat genotypes: a review. Physiol Mol Biol Plants 25(3):589–600. https://doi.org/10.1007/s12298-018-0629-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono M, Takahashi J (1964) The effect of wind force with reference to lodging of paddy rice. J Soil Sci Plant Nutr 10(6):20–27

    Article  Google Scholar 

  • Kosina P, Reynolds M, Dixon J, Joshi A (2007) Stakeholder perception of wheat production constraints, capacity building needs, and research partnerships in develo** countries. Euphytica 157(3):475–483

    Article  Google Scholar 

  • Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu LX, Jadhav A et al (2012) Association map** for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805. https://doi.org/10.1007/s00122-012-1872-0

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Sharma PK (2020) Soil salinity and food security in India. Front Sustain Food Syst 4:174. https://doi.org/10.3389/fsufs.2020.533781

    Article  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26. https://doi.org/10.3389/fchem.2018.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G (2015) Genoty**-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395. https://doi.org/10.1007/s00122-015-2513-1

    Article  CAS  PubMed  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Article  Google Scholar 

  • Liu B, Asseng S, Muller C, Ewert F, Elliott J et al (2016) Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat Clim Chang 6(12):1130–1136

    Article  Google Scholar 

  • Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (Normalized Difference Vegetation Index) independently from phenology. J Exp Bot 63:3789–3798. https://doi.org/10.1093/jxb/ers071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Mamrutha HM, Rinki RK, Kaur A, Yadav VK (2015) Standardization of temperature induction response technique in wheat. Wheat Barley Newsl 9:1–2

    Google Scholar 

  • Mares DJ (1983) Preservation of dormancy in freshly harvested wheat grain. Crop Pasture Sci 34:33–38. https://doi.org/10.1071/AR9830033

    Article  Google Scholar 

  • Mares DJ, Mrva K (2001) Map** quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust J Agric Res 52:1257–1265

    Article  CAS  Google Scholar 

  • Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167–1178. https://doi.org/10.1007/s00425-014-2172-5

    Article  CAS  PubMed  Google Scholar 

  • Mason RE, Mondal S, Beecher F, Pacheco A, Jampala B, Ibrahim A, Hays D (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436. https://doi.org/10.1007/s10681-010-0151-x

    Article  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • McMaster GJ, Derera NF (1976) Methodology and sample preparation when screening for sprouting damage in cereals. Cereal Res Commun 4:251–254

    Google Scholar 

  • Moinuddin, Fischer KD, Sayre M, Reynolds MP (2005) Osmotic adjustment in wheat in relation to grain yield under water deficit environments. Agronomy 97:1062–1071

    Article  Google Scholar 

  • Morgan G (2005) Pre-harvest sprouting in wheat. Texas Co-operative Extension E-336. http://counties.agrilife.org/taylor/files/2015/01/E336-Pre-Harvest-Sprouting-in-Wheat.pdf

  • Morgan JM, Condon AG (1986) Water use, grain yield, and osmoregulation in wheat. Aust J Plant Physiol 13:523–532

    Google Scholar 

  • Morgan JM, Hare RA, Fletcher RJ (1986) Genetic variation in osmoregulation in bread and durum wheats and its relationship to grain yield in a range of field environments. Crop Pasture Sci 37:449–457

    Article  Google Scholar 

  • Mori M, Uchino N, Chono M, Kato K, Miura H (2005) Map** QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323. https://doi.org/10.1007/s00122-005-1972-1

    Article  CAS  PubMed  Google Scholar 

  • Mttal V, Sheoran S, Singh N, Narwal S, Mamrutha HM, Tiwari V, Sharma I (2015) Effect of osmotic stress on root architecture and defensive system in wheat genotypes at seedling stage. J Wheat Res 7:52–59

    Google Scholar 

  • Mulsanti IW, Yamamoto T, Ueda T et al (2018) Finding the superior allele of japonica-type for increasing stem lodging resistance in indica rice varieties using chromosome segment substitution lines. Rice 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Munkvold JD, Tanaka J, Benscher D, Sorrells ME (2009) Map** quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet 119:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Mythili G, Goedecke J (2016) Economics of land degradation in India. In: Nkonya E, Mirzabaev A, von Braun J (eds) Economics of land degradation and improvement - a global assessment for sustainable development. Springer, Cham, pp 431–469

    Chapter  Google Scholar 

  • Nahar K, Ahamed KU, Fujita M (2010) Phenological variation and its relation with yield in several wheat (Triticum aestivum L.) cultivars under normal and late sowing mediated heat stress condition. Not Sci Biol 2(3):51–56

    Article  Google Scholar 

  • Née G, **ang Y, Soppe WJJ (2017) The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol 35:8–14. https://doi.org/10.1016/j.pbi.2016.09.002

    Article  PubMed  Google Scholar 

  • Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Scient World J 610721:12. https://doi.org/10.1155/2013/610721

    Article  CAS  Google Scholar 

  • Nilsson-Ehle H (1914) Zur kenntnis der mit der keimungsphysiologie des weizens in zusammenhang stehenden inneren faktoren. Z Pflanzenzüchtung 2:153–187

    Google Scholar 

  • Nyachiro JM (2012) Pre-harvest sprouting in cereals. Euphytica 188:1–5. https://doi.org/10.1007/s10681-012-0779-9

    Article  Google Scholar 

  • OECD-FAO (2020) OECD FAO agricultural outlook 2020–2029. FAO, Rome. https://doi.org/10.1787/112c23b-en

    Book  Google Scholar 

  • Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H (2003) Map** QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet 106:1491–1496. https://doi.org/10.1007/s00122-003-1208-1

    Article  CAS  PubMed  Google Scholar 

  • Pandey GC, Mehta G, Sharma P, Sharma V (2019) Terminal heat tolerance in wheat: an overview. J Cereal Res 11(1):1–16

    Article  CAS  Google Scholar 

  • Pham QD, Akira A, Hirano M, Sagawa S, Kuroda E (2004) Analysis of lodging resistant characteristic of different rice genotypes grown under the standard and nitrogen-free basal dressing accompanied with sparse planting density practices. Plant Prod Sci 7:243–251

    Article  Google Scholar 

  • Pinera-Chavez, Berry PM, Foulkes MJ, Jesson MA, Reynolds MP (2016) Avoiding lodging in irrigated spring wheat. I. Stem and root structural requirements. Field Crops Res 196:325–336

    Article  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas J-J, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter JR (2005) Rising temperatures are likely to reduce crop yields. Nature 436:174. https://doi.org/10.1038/436174b

    Article  CAS  PubMed  Google Scholar 

  • Poudel P, Poudel MR (2020) Heat stress effects and tolerance in wheat: a review. J Biol Today World 9:217. https://doi.org/10.35248/2322-3308.20.09.217

    Article  CAS  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533. https://doi.org/10.1146/annurev-arplant-042811-105550

    Article  CAS  PubMed  Google Scholar 

  • Rashid A, Stark JC, Tanveer A, Mustafa T (1999) Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. J Agron Crop Sci 182:231–237

    Article  Google Scholar 

  • Rasul G, Humphreys DG, Brule-Babel A, McCartney CA, Knox RE, DePauw RM (2009) Map** QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC domain’. Euphytica 168:363–378. https://doi.org/10.1007/s10681-009-9934-3

    Article  CAS  Google Scholar 

  • Rauf Y, Subhani A, Iqbal MS, Tariq M, Mahmood A, Shah M (2013) Screening of wheat genotypes for drought tolerance based on drought related indices. SABRAO J Breed Genet 45:255–263

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants (Basel) 8(2):34. https://doi.org/10.3390/plants8020034

    Article  CAS  PubMed Central  Google Scholar 

  • Rebetzke GJ, López-Castañeda C, Botwright Acuña TL, Condon AG, Richards RA (2008) Inheritance of coleoptile tiller appearance and size in wheat. Aust J Agric Res 59:863–873

    Article  Google Scholar 

  • Reynolds MP, Trethowan RM (2007) Physiological interventions in breeding for adaptation to abiotic stress. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Cham, pp 129–146. https://doi.org/10.1002/anie.199315241

    Chapter  Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179. https://doi.org/10.1016/j.pbi.2008.02.005

    Article  PubMed  Google Scholar 

  • Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Google Scholar 

  • Reynolds M, Manes Y, Izanloo A, Langridge (2009) Phenoty** approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309–320

    Article  Google Scholar 

  • Richards R, Rebetzke G, Condon A, van Herwaarden A (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Richards RA, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperate cereals: phenoty**, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Article  Google Scholar 

  • Rinki, Mamrutha HM, Kumar R, Tiwari V (2016) Comparison of seedling and adult stage heat stress tolerance in wheat. Wheat Barley Newslett 10(1):9

    Google Scholar 

  • Rinki, Sareen S, Meena BK, Kumar A, Tiwari V (2017) Standardization of lodging induction methodology under artificial conditions. Wheat Barley Newslett 11(1):10

    Google Scholar 

  • Rizza F, Ghashghaie J, Meyer S, Loredana M, Mastrangelo AM, Badeck FW (2012) Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Res 125:49–60

    Article  Google Scholar 

  • Sadras V (2002) Interaction between rainfall and nitrogen fertilisation of wheat in environments prone to terminal drought: economic and environmental risk analysis. Field Crops Res 77:201–215

    Article  Google Scholar 

  • Sarah R, Anton W, Richard R, Trushna K, Renu P, Ritika C et al (2016) Wheats developed for high yield on stored soil moisture have deep vigorous root systems. Funct Plant Biol 43:173–188. https://doi.org/10.1071/FP15182

    Article  Google Scholar 

  • Savicka M, Skute N (2010) Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija 56:26–33

    Article  CAS  Google Scholar 

  • Shah AN, Tanveer M, Rehman AU, Anjum SA, Iqbal J, Ahmad R (2016) Lodging stress in cereal-effects and management: an overview. Environ Sci Pollut Res 24(6):5222–5237

    Article  Google Scholar 

  • Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A et al (2019) Improving lodging resistance: using wheat and rice as classical examples. Int J Mol Sci 20:4211. https://doi.org/10.3390/ijms20174211

    Article  CAS  PubMed Central  Google Scholar 

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants – mechanisms and adaptations. InTech Publisher, Rijeka, Croatia, p 428

    Book  Google Scholar 

  • Sharma I, Tyagi B, Singh G, Venkatesh K, Gupta O (2015) Enhancing wheat production-a global perspective. Indian J Agric Sci 85:3–13

    Google Scholar 

  • Sharma D, Pandey G, Mamrutha H, Singh R, Singh N, Singh G, Rane J, Tiwari R (2019a) Genotype–phenotype relationships for high-temperature tolerance: an integrated method for minimizing phenoty** constraints in wheat. Crop Sci. https://doi.org/10.2135/cropsci2019.01.0055

  • Sharma D, Singh R, Tiwari R, Kumar R, Gupta V (2019b) Wheat responses and tolerance to terminal heat stress: a review. In: Hasanuzzaman M, Nahar K, Hossain MA (eds) Wheat production in changing environments: responses, adaptation and tolerance. Springer, Singapore, pp 149–173

    Chapter  Google Scholar 

  • Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha H, Singh V et al (2015) Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-015-1813-x

  • Singh AK, Knox RE, Clarke JM, Clarke FR, Singh A, Depauw RM et al (2014) Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. Mol Breed 33:919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somyong S, Ishikawa G, Munkvold JD, Tanaka J, Benscher D, Sorrells ME et al (2014) Fine map** of a preharvest sprouting QTL interval on chromosome 2B in white wheat. Theor Appl Genet 127:1843–1855. https://doi.org/10.1007/s00122-014-2345-4

    Article  PubMed  Google Scholar 

  • Srivastava A, Srivastava P, Sharma A, Sarlach RS (2017) Canopy temperature an effective measure of drought stress tolerance in RIL population of wheat. Vegetos 30:1

    Article  Google Scholar 

  • Stapper M, Fischer RA (1990) Genotype, sowing date and plant spacing influence on high yielding irrigated wheat in southern New South Wales II growth, yield and nitrogen use. Aust J Agric Res 41:1021–1041

    Article  Google Scholar 

  • Sterling M, Baker CJ, Berry PM, Wade A (2003) An experimental investigation of the lodging of wheat. Agric For Meteorol 19:149–165

    Article  Google Scholar 

  • Thomason WE, Hughes KR, Griffey CA, Parrish DJ, Barbeau WE (2009) Understanding pre-harvest sprouting of wheat. In: Virginia Cooperative Extension. Virginia Tech, Blacksburg, VA

    Google Scholar 

  • Torada A, Ikeguchi S, Koike M (2005) Map** and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica 143:251–255. https://doi.org/10.1007/s10681-005-7872-2

    Article  CAS  Google Scholar 

  • Tuttle KM, Martinez SA, Schramm EC, Takebayashi Y, Seo M, Steber CM (2015) Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.). Seed Sci Res 25:179–193. https://doi.org/10.1017/S0960258515000057

    Article  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109. https://doi.org/10.1007/s10535-007-0021-0

    Article  CAS  Google Scholar 

  • Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C et al (2014) Year patterns of climate impact on wheat yields. Int J Climatol 34:518–528

    Article  Google Scholar 

  • Yu Z, Wang X, Zhang L (2018) Structural and functional dynamics of dehydrins: a plant protector protein under abiotic stress. Int J Mol Sci 19:16–18. https://doi.org/10.3390/ijms19113420

    Article  CAS  Google Scholar 

  • Zhang HF, Liu RZC (1989) Studies on preharvest sprouting resistance in winter wheat and its determination. Acta Agron Sin 15:116–122. https://doi.org/10.1007/s13353-015-0286-5

    Article  CAS  Google Scholar 

  • Zhang JX, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang L, Richards RA, Condon AG, Liu DC, Rebetzke GJ (2014) Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). J Exp Bot 66:1215–1226. https://doi.org/10.1093/jxb/eru468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Mamrutha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mamrutha, H.M. et al. (2022). Abiotic Stress Tolerance in Wheat: Physiological Interventions. In: Kashyap, P.L., et al. New Horizons in Wheat and Barley Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-4449-8_20

Download citation

Publish with us

Policies and ethics

Navigation