Influence of Nanomaterials in Combined Microbial Fuel Cell-Electro-Fenton Systems as a Sustainable Alternative for Electricity Generation and Wastewater Treatment

  • Chapter
  • First Online:
Innovations in Environmental Biotechnology

Abstract

The supply of energy from sources other than conventional ones and the pollution of aquatic bodies are global problems. Combined microbial fuel cell (MFC) and electro-Fenton (EF) systems are an emerging alternative that includes bioenergy production, which can use to drive the EF process toward the elimination of pollutants present in wastewater, avoiding the energy expenditure that would be incurred if only the EF process were carried out. This chapter shows MFC, EF, and MFC-EF’s fundamentals, emphasizing the nanomaterials developed so far for their use as anodes and cathodes in MFC-EF systems, mainly carbon-based. In the specific case, the anodic electrodes, the porosity significantly influences on the biofilm’s adhesion to its surface and on electron’s transfer, guaranteeing that the EF process is carried out. The most used nanomaterials are carbon nanotubes and graphene in cathode due to their large specific surface area and electrical conductivity. Likewise, the solid iron promoters of nanometric size are recently reported and incorporated into the medium or as cathode modifiers. Finally, it included a cost/benefit analysis according to the maintenance of microorganisms, preparation of electrodes, and their useful life, cell design, and the mineralization of pollutants. The limitations, advantages, and areas of an opportunity of the MFC-EF systems that can become in the future a versatile and dominant technology for the generation of bioenergy and the elimination of pollutants in wastewater pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abourached C, English MJ, Liu H (2016) Wastewater treatment by microbial fuel cell (MFC) prior irrigation water reuse. J Clean Prod 137:144–149

    Article  CAS  Google Scholar 

  • Ai Z, Mei T, Liu J, Li J, Jia F, Zhang L, Qiu J (2007) Fe@Fe2O3 core-shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system. J Phys Chem C 111:14799–14803

    Article  CAS  Google Scholar 

  • Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochem of graphene and related materials. Chem Rev 114:7150–7188

    Article  CAS  PubMed  Google Scholar 

  • Babaei-Sati R, Basiri Parsa J (2017) Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process. J Ind Eng Chem 52:270–276

    Article  CAS  Google Scholar 

  • Bian B, Shi D, Cai X, Hu M, Guo Q, Zhang C, Wang Q, Sun AX, Yang J (2018) 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 44:174–180

    Article  CAS  Google Scholar 

  • Brillas E (2014) Electro-Fenton, UVA Photoelectro-Fenton and solar Photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review. J Mex Chem Soc 58:239–255

    CAS  Google Scholar 

  • Brillas E, Mur E, Sauleda R, Sánchez L, Peral J, Doménech X, Casado J (1998) Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl Catal Environ 16:31–42

    Article  CAS  Google Scholar 

  • Chen CY, Tang C, Wang HF, Chen CM, Zhang X, Huang X, Zhang Q (2016a) Oxygen reduction reaction on graphene in an electro-Fenton system: in situ generation of H2O2 for the oxidation of organic compounds. J Energy Chem 9:1194–1199

    CAS  Google Scholar 

  • Chen W, Yang X, Huang J, Zhu Y, Zhou Y, Yao Y, Li C (2016b) Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochim Acta 200:75–83

    Article  CAS  Google Scholar 

  • Cheng K, Hu J, Hou H, Liu B, Chen Q, Pan K, Pu W, Yang J, Wu X, Yang C (2017) Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment. Bioresour Technol 229:126–133

    Article  CAS  PubMed  Google Scholar 

  • Christwardana M, Frattini D, Duarte KDZ, Accardo G, Kwon Y (2019) Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl Energy 238:239–248

    Article  CAS  Google Scholar 

  • Divya Priya A, Deva S, Shalini P, Pydi Setty Y (2020) Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance. Renew Energy 150:156–166

    Article  CAS  Google Scholar 

  • Divyapriya G, Nambi IM, Senthilnathan J (2017) An innate quinone functionalized electrochemically exfoliated graphene/Fe3O4 composite electrode for the continuous generation of reactive oxygen species. Chem Eng J 316:964–977

    Article  CAS  Google Scholar 

  • Dong H, Liu X, Xu T, Wang Q, Chen X, Chen S, Zhang H, Liang P, Huang X, Zhang X (2018) Hydrogen peroxide generation in microbial fuel cells using graphene-based air-cathodes. Bioresour Technol 247:684–689

    Article  CAS  PubMed  Google Scholar 

  • Duteanu NM, Ghangrekar MM, Erable B, Scott K (2010) Microbial fuel cells - an option for wastewater treatment. Environ Eng Manag J 9:1069–1087

    Article  CAS  Google Scholar 

  • Feng CH, Li FB, Mai HJ, Li XZ (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Ganiyu SO, Zhou M, Martínez-Huitle CA (2018) Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl Catal Environ 235:103–129

    Article  CAS  Google Scholar 

  • Huang A, Zhi D, Tang H, Jiang L, Luo S, Zhou Y (2020) Effect of Fe2+ , Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage. Sci Total Environ 720:137560

    Article  CAS  PubMed  Google Scholar 

  • Jie G, Kongyin Z, **nxin Z, Zhijiang C, Min C, Tian C, Junfu W (2015) Preparation and characterization of carboxyl multi-walled carbon nanotubes/calcium alginate composite hydrogel nano-filtration membrane. Mater Lett 157:112–115

    Article  CAS  Google Scholar 

  • Kalantary RR, Farzadkia M, Kermani M, Rahmatinia M (2018) Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: process optimization using response surface methodology. J Environ Chem Eng 6:4644–4652

    Article  CAS  Google Scholar 

  • Kuang C, Xu Y, **e G, Pan Z, Zheng L, Lai W, Ling J, Talawar M, Zhou X (2020) Preparation of CeO2-doped carbon nanotubes cathode and its mechanism for advanced treatment of pig farm wastewater. Chemosphere 262:128215

    Article  PubMed  CAS  Google Scholar 

  • Li X, ** X, Zhao N, Angelidaki I, Zhang Y (2017) Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res 119:67–72

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen S, Angelidaki I, Zhang Y (2018) Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng J 354:492–506

    Article  CAS  Google Scholar 

  • Li S, Liu Y, Ge R, Yang S, Zhai Y, Hua T, Ondon BS, Zhou Q, Li F (2020a) Microbial electro-Fenton: a promising system for antibiotics resistance genes degradation and energy generation. Sci Total Environ 699:134160

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shen C, Liu Y, Ma C, Li F, Yang B, Huang M, Wang Z, Dong L, Wolfgang S (2020b) Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. Appl Catal Environ 260:118204

    Article  CAS  Google Scholar 

  • Liang Y, Zhai H, Liu B, Ji M, Li J (2020) Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci Total Environ 713:136483

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM (2012) Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technol 114:275–280

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang L, Zuo K, Luo S, Zhang X, Liang P, Huang X (2019) A novel operational strategy to enhance wastewater treatment with dual-anode assembled microbial desalination cell. Bioelectrochemistry 126:99–104

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chang Q, Gao Y, Huang W, Sun Z, Yan M, Guo C (2020) High performance of microbial fuel cell afforded by metallic tungsten carbide decorated carbon cloth anode. Electrochim Acta 330:135243

    Article  CAS  Google Scholar 

  • Mathuriya AS, Pant D (2019) Assessment of expanded polystyrene as a separator in microbial fuel cell. Environ Technol 40:2052–2061

    Article  CAS  PubMed  Google Scholar 

  • Mousset E, Wang Z, Hammaker J, Lefebvre O (2016) Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater. Electrochim Acta 214:217–230

    Article  CAS  Google Scholar 

  • Munoz-Cupa C, Hu Y, Xu C, Bassi A (2020) An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci Total Environ 754:142429

    Article  PubMed  CAS  Google Scholar 

  • Mustakeem (2015) Electrode materials for microbial fuel cells: nanomaterial approach. Mater Renew Sustain Energy 4:1–11

    Article  Google Scholar 

  • Nagar H, Badhrachalam N, Rao VVB, Sridhar S (2019) A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation. Mater Chem Phys 224:175–185

    Article  CAS  Google Scholar 

  • Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621

    Article  CAS  Google Scholar 

  • Pujol AA, León I, Cárdenas J, Sepúlveda-Guzmán S, Manríquez J, Sirés I, Bustos E (2020) Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode. Electrochim Acta 337:135784

    Article  CAS  Google Scholar 

  • Saba B, Christy AD, Yu Z, Co AC, Islam R, Tuovinen OH (2017) Characterization and performance of anodic mixed culture biofilms in submersed microbial fuel cells. Bioelectrochemistry 113:79–84

    Article  CAS  PubMed  Google Scholar 

  • Shabani M, Younesi H, Pontié M, Rahimpour A, Rahimnejad M, Zinatizadeh AA (2020) A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J Clean Prod 264:121446

    Article  CAS  Google Scholar 

  • Sun X, Xu H, Zhu Q, Lu L, Zhao H (2015) Synthesis of Nafion®-stabilized Pt nanoparticles to improve the durability of proton exchange membrane fuel cell. J Energy Chem 24:359–365

    Article  Google Scholar 

  • Varanasi JL, Nayak AK, Sohn Y, Pradhan D, Das D (2016) Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochim Acta 199:154–163

    Article  CAS  Google Scholar 

  • Wang Y, Zhang H, Feng Y, Li B, Yu M, Xu X, Cai L (2019) Bio-Electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation. Biosens Bioelectron 136:8–15

    Article  CAS  PubMed  Google Scholar 

  • Wang HYA, Yang CS, Lin CH (2020) A rapid quantification method for energy conversion efficiency of microbial fuel cells. J Taiwan Inst Chem Eng 109:124–128

    Article  CAS  Google Scholar 

  • Xu F, Yuan Q, Zhou LL, Zhu YJ, Li YM, Da Du Y, Wang Q, Kong Q (2018) Economic benefit analysis of typical microbial fuel cells baseon a cost–benefit analysis model. Desalin Water Treat 135:59–93

    Article  CAS  Google Scholar 

  • Yazdi AA, D’Angelo L, Omer N, Windiasti G, Lu X, Xu J (2016) Carbon nanotube modification of microbial fuel cell electrodes. Biosens Bioelectron 85:536–552

    Article  CAS  PubMed  Google Scholar 

  • You J, Wallis L, Radisavljevic N, Pasternak G, Sglavo VM, Hanczyc MM, Greenman J, Ieroulus I (2019) A comprehensive study of custom-made ceramic separators for microbial fuel cells: towards “living” bricks. Energies 12:4071

    Article  CAS  Google Scholar 

  • Zakaria BS, Lin L, Dhar BR (2019) Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge. Sci Total Environ 689:691–699

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Li H, Li X, Zhao B, Junhe Y (2014) Electrocatalysis of oxygen reduction on carbon nanotubes with different surface functional groups in acid and alkaline solutions. Int J Hydrog Energy 39:16964–16975

    Article  CAS  Google Scholar 

  • Zhang X, Li C, Guo Q, Huang K (2020) Performance of anaerobic fluidized bed microbial fuel cell with different porous anodes. Chin J Chem Eng 28:846–853

    Article  CAS  Google Scholar 

  • Zhao K, Su Y, Quan X, Liu Y, Chen S, Yu H (2018) Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J Catal 357:118–126

    Article  CAS  Google Scholar 

  • Zhuang L, Zhou S, Li Y, Liu T, Huang D (2010) In situ Fenton-enhanced cathodic reaction for sustainable increased electricity generation in microbial fuel cells. J Power Sources 195:1379–1382

    Article  CAS  Google Scholar 

  • Zou R, Angelidaki I, ** B, Zhang Y (2020) Feasibility and applicability of the scaling-up of bio-electro-Fenton system for textile wastewater treatment. Environ Int 134:105352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Cátedras-CONACYT program and the Center for Research and Technological Development in Electrochemistry for the facilities provided for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Sandoval-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Sánchez, C., Bustos, E.B., Sandoval-González, A. (2022). Influence of Nanomaterials in Combined Microbial Fuel Cell-Electro-Fenton Systems as a Sustainable Alternative for Electricity Generation and Wastewater Treatment. In: Arora, S., Kumar, A., Ogita, S., Yau, Y.Y. (eds) Innovations in Environmental Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4445-0_28

Download citation

Publish with us

Policies and ethics

Navigation