Using Mitochondrial DNA in Human Identification

  • Reference work entry
  • First Online:
Handbook of DNA Profiling
  • 1509 Accesses

Abstract

Mitochondrial DNA (mtDNA) has been employed for human identification in forensic caseworks since 1996. High copy number and uniparental inheritance are some of the advantageous characteristics of mitochondrial DNA (mtDNA) that yields useful results in degraded samples that fail to generate successful nuclear DNA (nuDNA) profiles. Presently, analysis of autosomal short tandem repeats (STR) is utilized for genetic fingerprinting in forensic caseworks. However, majority of the samples from skeletal remains of deceased persons encountered in caseworks such as mass disaster exposed to high temperature and harsh environment conditions are highly degraded. The mitochondrial DNA (mtDNA) profiling in addition to nuclear DNA in disaster victim and archaeological ancient samples establish the human identification. The mitochondrial DNA being a maternally inherited marker plays a crucial role in establishing phylogenic ancestry. Also, the mitochondrion being powerhouse of the cells plays a crucial role in human ageing and is an excellent marker for age estimation. In this chapter, the structure and function of the mitochondrial genome, its inheritance pattern and transmission, application in forensic caseworks, data interpretation in mtDNA casework and population data basing, and future perspectives have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  • Andrews RM, Kubacka I, Chinnery PF et al (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23:147

    Article  CAS  PubMed  Google Scholar 

  • Attimonelli M, Accetturo M, Santamaria M et al (2005) HmtDB, a human mitochondrial genomic resource based on variability studies supporting population genetics and biomedical research. BMC Bioinform 6:1–9

    Article  CAS  Google Scholar 

  • Bandelt H-J, Kloss-Brandstätter A, Richards MB et al (2014) The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. J Hum Genet 59:66–77

    Article  CAS  PubMed  Google Scholar 

  • Bottino C, Silva R, Moura-Neto RS (2021) Resolving a human identification case for the Rio de Janeiro Police with massively parallel sequencing of mtDNA using a proposed pipeline. Genet Mol Res 20(1):GMR18757

    Article  CAS  Google Scholar 

  • Butler JM (2011) Advanced topics in forensic DNA ty**: methodology. Academic

    Google Scholar 

  • Cao Y, Zou KN, Huang JP et al (2017) Whole genome sequencing of human mtDNA based on ion torrent PGMâ„¢ platform. Fa Yi Xue Za Zhi 33:368–373

    CAS  PubMed  Google Scholar 

  • Chinnery PF, Gomez-Duran A (2018) Oldies but goldies mtDNA population variants and neurodegenerative diseases. Front Neurosci 12:682

    Article  PubMed  PubMed Central  Google Scholar 

  • Cihlar JC, Strobl C, Lagacé R et al (2020) Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel. Mitochondrion 55:122–133

    Article  CAS  PubMed  Google Scholar 

  • Coble MD, Loreille OM, Wadhams MJ et al (2009) Mystery solved: the identification of the two missing Romanov children using DNA analysis. PLoS One 4:e4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CL (1998) Mitochondrial DNA: State of Tennessee v. Paul Ware. Profiles DNA 1:6–7

    Google Scholar 

  • Demirel Y, Gerbaud V (2019) Thermodynamics and biological systems. In: Nonequilibrium thermodynamics. Elsevier, pp 489–571

    Chapter  Google Scholar 

  • Diroma MA, Varvara AS, Attimonelli M et al (2020) Investigating human mitochondrial genomes in single cells. Genes (Basel) 11:534

    Article  CAS  Google Scholar 

  • Duan M, Chen L, Ge Q et al (2019) Evaluating heteroplasmic variations of the mitochondrial genome from whole genome sequencing data. Gene 699:145–154

    Article  CAS  PubMed  Google Scholar 

  • Ehler E, Novotný J, Juras A et al (2019) AmtDB: a database of ancient human mitochondrial genomes. Nucleic Acids Res 47:D29–D32. https://doi.org/10.1093/nar/gky843

    Article  CAS  PubMed  Google Scholar 

  • Eshaghian A, Vleugels RA, Canter JA et al (2006) Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers. J Invest Dermatol 126:336–344

    Article  CAS  PubMed  Google Scholar 

  • Foran DR (2006) Relative degradation of nuclear and mitochondrial DNA: an experimental approach. J Forensic Sci 51:766–770

    Article  CAS  PubMed  Google Scholar 

  • Gill P, Ivanov PL, Kimpton C et al (1994) Identification of the remains of the Romanov family by DNA analysis. Nat Genet 6:130–135

    Article  CAS  PubMed  Google Scholar 

  • Glancy B, Kim Y, Katti P, Willingham TB (2020) The functional impact of mitochondrial structure across subcellular scales. Front Physiol 11:1462

    Article  Google Scholar 

  • Gray MW, Burger G, Ranz Lang B (2001) The origin and early evolution of mitochondria. Genome Biol 2:1018. https://doi.org/10.1186/gb-2001-2-6-reviews1018

  • Holland MM, Fisher DL, Mitchell LG et al (1993) Mitochondrial DNA sequence analysis of human skeletal remains: identification of remains from the Vietnam War. J Forensic Sci 38:542–553

    Article  CAS  PubMed  Google Scholar 

  • Horai S, Hayasaka K (1990) Intraspecific nucleotide sequence differences in the major noncoding region of human mitochondrial DNA. Am J Hum Genet 46:828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber N, Parson W, Dür A (2018) Next generation database search algorithm for forensic mitogenome analyses. Forensic Sci Int Genet 37:204–214

    Article  CAS  PubMed  Google Scholar 

  • Hwa HL, Ko TM, Chen YC et al (2012) Sequence polymorphisms of mtDNA HV1, HV2 and HV3 regions in eight population groups living in Taiwan. Aust J Forensic Sci 44:243–252. https://doi.org/10.1080/00450618.2011.650208

    Article  Google Scholar 

  • Kogelnik AM, Lott MT, Brown MD et al (1996) MITOMAP: a human mitochondrial genome database. Nucleic Acids Res 24:177–179. https://doi.org/10.1093/nar/24.1.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühlbrandt W (2015) Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:1–11

    Article  CAS  Google Scholar 

  • Lee HY, Song I, Ha E, Cho SB, Yang WI, Shin KJ (2008) mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences. BMC Bioinformatics 9:483. https://doi.org/10.1186/1471-2105-9-483

  • Lee YS, Kim W-Y, Ji M et al (2009) MitoVariome: a variome database of human mitochondrial DNA. In: BMC genomics. Springer, pp 1–5

    Google Scholar 

  • Li M, Schönberg A, Schaefer M et al (2010) Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87:237–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longchamps RJ, Castellani CA, Yang SY et al (2020) Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 15:e0228166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo S, Valencia CA, Zhang J et al (2018) Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci 115:13039–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso M, Ienco EC, Simoncini C et al (2011) May mitochondrial eve and mitochondrial haplogroups play a role in neurodegeneration and alzheimer’s disease? Int J Alzheimers Dis. 2011: 709061. https://doi.org/10.4061/2011/709061

  • McCarron JG, Wilson C, Sandison ME et al (2013) From structure to function: mitochondrial morphology, motion and sha** in vascular smooth muscle. J Vasc Res 50:357–371. https://doi.org/10.1159/000353883

    Article  PubMed  PubMed Central  Google Scholar 

  • Meissner C, von Wurmb N, Schimansky B, Oehmichen M (1999) Estimation of age at death based on quantitation of the 4977-bp deletion of human mitochondrial DNA in skeletal muscle. Forensic Sci Int 105:115–124

    Article  CAS  PubMed  Google Scholar 

  • Melton T, Dimick G, Higgins B et al (2012) Mitochondrial DNA analysis of 114 hairs measuring less than 1 cm from a 19-year-old homicide. Investig Genet 3:1–5

    Article  CAS  Google Scholar 

  • Parson W, Dür A (2007) EMPOP – a forensic mtDNA database. Forensic Sci Int Genet 1:88–92. https://doi.org/10.1016/j.fsigen.2007.01.018

    Article  PubMed  Google Scholar 

  • Parson W, Brandstätter A, Alonso A et al (2004) The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Sci Int 139:215–226

    Article  CAS  PubMed  Google Scholar 

  • Parsons TJ (2006) Mitochondrial DNA genome sequencing and SNP assay development for increased power of discrimination. US Army Research. Paper 104. http://digitalcommons.unl.edu/usarmyresearch/104

  • Pearce SF, Rebelo-Guiomar P, D’Souza AR et al (2017) Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem Sci 42:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plecitá-Hlavatá L, Ježek P (2016) Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80:31–50

    Article  CAS  PubMed  Google Scholar 

  • Reid R (2018) Applications of the mitochondrion in forensic DNA ty**. In: DNA fingerprinting: advancements and future endeavors. Springer, pp 241–255

    Chapter  Google Scholar 

  • Röck A, Irwin J, Dür A et al (2011) SAM: string-based sequence search algorithm for mitochondrial DNA database queries. Forensic Sci Int Genet 5:126–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogaev EI, Grigorenko AP, Moliaka YK et al (2009) Genomic identification in the historical case of the Nicholas II royal family. Proc Natl Acad Sci 106:5258–5263. https://doi.org/10.1073/pnas.0811190106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato M, Sato K (2012) Maternal inheritance of mitochondrial DNA: degradation of paternal mitochondria by allogeneic organelle autophagy, allophagy. Autophagy 8:424–425. https://doi.org/10.4161/auto.19243

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Sato K (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta, Mol Cell Res 1833:1979–1984

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347:576–580

    Article  PubMed  Google Scholar 

  • Shoubridge EA (2004) Mitochondrial inheritance. In: Encyclopedia of biological chemistry. Elsevier, pp 716–719

    Chapter  Google Scholar 

  • Sinha M, Rana M, Kushwaha P (2020) Applications of mitochondrial DNA in forensic science. In: Forensic DNA ty**: principles, applications and advancements. Springer, pp 329–343

    Chapter  Google Scholar 

  • Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta Bioenerg 1410:103–123

    Article  CAS  Google Scholar 

  • Trifunovic A (2006) Mitochondrial DNA and ageing. Biochim Biophys Acta Bioenerg 1757:611–617

    Article  CAS  Google Scholar 

  • Vaught RC, Dowling DK (2018) Maternal inheritance of mitochondria: implications for male fertility? Reproduction 155:R159–R168

    Article  CAS  PubMed  Google Scholar 

  • Young JM, Higgins D, Austin JJ (2019) Hybridization enrichment to improve forensic mitochondrial DNA analysis of highly degraded human remains. Front Ecol Evol 7:450. https://doi.org/10.3389/fevo.2019.00450

    Article  Google Scholar 

  • Yuan Y, Ju YS, Kim Y et al (2020) Comprehensive molecular characterization of mitochondrial genomes in human cancers. Nat Genet 52:342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Mo Q, Guo S et al (2020) A novel next-generation sequencing–based approach for concurrent detection of mitochondrial DNA copy number and mutation. J Mol Diagn 22:1408–1418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shrivastava, P., Rana, M., Kushwaha, P., Negi, D.S. (2022). Using Mitochondrial DNA in Human Identification. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-16-4318-7_18

Download citation

Publish with us

Policies and ethics

Navigation