Relevance on the Recovery of High Economic Value Elements and Potential of Ionic Liquids

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

The increasing demand for critical raw materials, along with the increasing need of making the related industrial processes sustainable, highlights the importance of obtaining them from secondary or alternative sources. Lithium, cobalt, and nickel, as well as other critical elements (platinum, palladium, gallium, germanium, indium, and niobium), are present in wastewaters of industries using emerging technologies, which should be recovered due to their high economic value while fulfilling the circular economy concept. In this field, ionic liquids (ILs) have gained increased interest as extraction solvents and materials due to their unique properties, namely, the possibility of different cation-anion combinations that allow to improve selectivity and extraction/sorption efficiency for critical elements. Moreover, ionic liquids regeneration may be possible, representing an additional economic advantage. In this book chapter, it is provided the state of the art on the application of ILs in the recovery of high economic value elements from aqueous matrices. It should be remarked that despite its relevance, to date the ionic liquids feasibility has not been evaluated under realistic industrial wastewater conditions (element concentrations, sorption time, composition of multi-element systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • H.F.D. Almeida, Treatment of Aqueous Effluents Contaminated with Active Pharmaceutical Ingredients (ITQB, New University of Lisboa, Lisboa, 2017)

    Google Scholar 

  • P. Alves Dias, D. Blagoeva, C. Pavel, N. Arvanitidis, Cobalt: Demand-Supply Balances in the Transition to Electric Mobility (Publications Office of the European Union, 2018). https://doi.org/10.2760/97710. https://op.europa.eu/en/publication-detail/-/publication/0ef45e16-e62e-11e8-b690-01aa75ed71a1/language-en

  • M. Amde, J.F. Liu, L. Pang, Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ. Sci. Technol. 49, 12611–12627 (2015)

    CAS  Google Scholar 

  • ATSDR, Toxicology Profile for Cobalt (Agency for Toxic Substances and Disease Registry, Atlanta, 2004), pp. 436–446. https://doi.org/10.1111/j.1464-410X.1956.tb04795.x

    Book  Google Scholar 

  • ATSDR, Toxicology Profile for Nickel. Agency Toxic Subst Dis Regist (2005). https://doi.org/10.1155/2013/286524

  • ATSDR, Priority list of hazardous substances (2017). http://www.atsdr.cdc.gov/spl/. Accessed 2 Dec 2017

  • S. Boudesocque, A. Mohamadou, L. Dupont, et al., Use of dicyanamide ionic liquids for extraction of metal ions. RSC Adv. 6, 107894–107904 (2016)

    CAS  Google Scholar 

  • D. Brooks, PCB Currents: How They Flow, How They React (Prentice Hall, Upper Saddle River, 2013)

    Google Scholar 

  • C.E.D. Cardoso, J.C. Almeida, C.B. Lopes, et al., Recovery of rare earth elements by carbon-based nanomaterials — a review. Nano 9, 814–848 (2019)

    CAS  Google Scholar 

  • J.Y.S. Chenglong, J.I.N.G. Yan, Lithium and magnesium separation from salt lake brine by ionic liquids containing tributyl phosphate. CIESC J 66, 253–259 (2015)

    Google Scholar 

  • C.-W. Cho, T.P.T. Pham, Y.-C. Jeon, et al., Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69, 1003–1007 (2007)

    CAS  Google Scholar 

  • C. Cluzel. Batteries on wheels: the role of battery electric cars in the EU power system and beyond (2019). https://www.transportenvironment.org/sites/te/files/publications/2019_06_Element_Energy_Batteries_on_wheels_Public_report.pdf

  • Council of the European Union, Parlament E, Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union (2013). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF

  • K.S. Egorova, V.P. Ananikov, Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7, 336–360 (2014)

    CAS  Google Scholar 

  • European Commission, Critical Raw Materials for the EU, Report of the Ad-hoc Working Group on Defining Critical Raw Materials (2010). http://www.euromines.org/files/what-we-do/sustainable-development-issues/2010-report-critical-raw-materials-eu.pdf

  • European Commission, Report on critical raw materials for the EU (2014). https://ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf

  • European Commission, EU Critical Raw Materials Profiles (2015). http://www.residuorecurso.com/blog/wp-content/uploads/crm-critical-material-profiles_en-1.pdf

  • European Commission, The 2017 List of Critical Raw Materials for the EU (2017a). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0490&from=EN

  • European Commission, Study on the Review of the List of Critical Raw Materials (2017b). https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1/language-en

  • European Commission, Report on Critical Raw Materials and the Circular Economy (2018a). https://op.europa.eu/en/publication-detail/-/publication/d1be1b43-e18f-11e8-b690-01aa75ed71a1/language-en/format-PDF/source-80004733

  • European Commission, Report on Raw Materials for Battery Applications (2018b). https://ec.europa.eu/transport/sites/transport/files/3rd-mobility-pack/swd20180245.pdf

  • P.A.M. Figueira, Nanomagnetes para remoção de iões metálicos de águas residuais (Universidade de Aveiro, 2010). http://hdl.handle.net/10773/3850

  • N. Fontanals, F. Borrull, R.M. Marcé, Ionic liquids in solid-phase extraction. TrAC – Trends Anal. Chem. 41, 15–26 (2012)

    CAS  Google Scholar 

  • M.G. Freire, C.M.S.S. Neves, I.M. Marrucho, et al., Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010)

    CAS  Google Scholar 

  • M. Frenzel, M.P. Ketris, J. Gutzmer, On the geological availability of germanium. Mineral. Deposita 49, 471–486 (2014)

    CAS  Google Scholar 

  • G. Gangadhar, U. Maheshwari, Application of nanomaterials for the removal of pollutants from effluent streams. Nanosci. Nanotechnol. Asia 2, 140–150 (2012)

    CAS  Google Scholar 

  • D. Gao, X. Yu, Y. Guo, et al., Extraction of lithium from salt lake brine with triisobutyl phosphate in ionic liquid and kerosene. Chem. Res. Chin. Univ. 31, 621–626 (2015)

    CAS  Google Scholar 

  • D. Gao, Y. Guo, X. Yu, et al., Extracting lithium from the high concentration ratio of magnesium and lithium brine using imidazolium-based ionic liquids with varying alkyl chain lengths. J. Chem. Eng. Japan 49, 104–110 (2016)

    CAS  Google Scholar 

  • S.R. Golroudbary, N. Krekhovetckii, M. El Wali, A. Kraslawski, Environmental sustainability of niobium recycling: the case of the automotive industry. Theatr. Rec. 4, 5–27 (2019)

    Google Scholar 

  • M. Gras, Recycling of Metals from NiMH Batteries: Development of Liquid-Liquid Selective Extractions Based on Ionic Liquids (Université Grenoble Alpes, 2018). https://tel.archives-ouvertes.fr/tel-01913113/document. https://hal.archives-ouvertes.fr/tel-01913113v1

  • M.I. Hossain, M. El-Harbawi, A. Kumer, Acute toxicity of OH-functionalized ionic liquids to the aquatic species. In: International Conference on Advances in Engineering Science and Management. Agra (2015).

    Google Scholar 

  • L. Kavanagh, J. Keohane, J. Cleary, et al., Lithium in the natural waters of the South East of Ireland. Int. J. Environ. Res. Public Health 14, 561–576 (2017)

    Google Scholar 

  • M.I. Khan, D. Zaini, A.M. Shariff, M. Moniruzzaman, Framework for ecotoxicological risk assessment of ionic liquids. Procedia Eng. 148, 1141–1148 (2016)

    CAS  Google Scholar 

  • S. Kim, J. Kim, S. Kim, et al., Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environ. Sci. Water Res. Technol. 4, 175–182 (2018)

    CAS  Google Scholar 

  • I.V. Kubrakova, O.A. Tyutyunnik, I.Y. Koshcheeva, et al., Migration behavior of platinum group elements in natural and technogeneous systems. Geochem. Int. 55, 108–124 (2017)

    CAS  Google Scholar 

  • K.J. Kulacki, G.A. Lamberti, Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 10, 104–110 (2008)

    CAS  Google Scholar 

  • K.J. Kulacki, D.T. Chaloner, D.M. Costello, et al., Aquatic toxicity and biodegradation of ionic liquids: a synthesis. Chem Today 25, 32–36 (2007)

    Google Scholar 

  • K. Kunduru, M. Nazarkovsky, S. Farah, et al., Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment, in Water Purification, ed. by A. M. Grumezescu, (Elsevier Inc., 2017), pp. 33–74. https://springer.longhoe.net/referenceworkentry/10.1007%2F978-3-319-48281-1_9-1

  • K. Larsson, K. Binnemans, Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling. Green Chem. 16, 4595–4603 (2014)

    CAS  Google Scholar 

  • Z. Lei, B. Chen, Y.M. Koo, D.R. Macfarlane, Introduction: ionic Liquids. Chem. Rev. 117, 6633–6635 (2017)

    Google Scholar 

  • M. Lowe, S. Tokuoka, T. Trigg, G. Gereffi, Lithium-ion Batteries for Electric Vehicles: The U.S. Value Chain (Elsevier, Amsterdam, 2010)

    Google Scholar 

  • Y. Miao, P. Hynan, A. Von Jouanne, A. Yokochi, Current Li-Ion battery technologies in electric vehicles and opportunities for advancements. Energies 12, 1–20 (2019)

    Google Scholar 

  • R.R. Moskalyk, Gallium: the backbone of the electronics industry. Miner. Eng. 16, 921–929 (2003)

    CAS  Google Scholar 

  • G.V. Myasoedova, N.P. Molochnikova, O.B. Mokhodoeva, B.F. Myasoedov, Application of ionic liquids for solid-phase extraction of trace elements. Anal. Sci. 24, 1351–1353 (2008)

    CAS  Google Scholar 

  • J. Pawlak, E. Lodyga-ChruÅ›ciÅ„ska, J. Chrustowicz, Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 28, 247–254 (2014)

    CAS  Google Scholar 

  • E.T.S. Pereira, Lithium in Portugal. From an opportunity to a (hidden) threat? (University of Porto, Porto, 2018)

    Google Scholar 

  • K. Ravindra, L. Bencs, R. Van Grieken, Platinum group elements in the environment and their health risk. Sci. Total Environ. 318, 1–43 (2004)

    CAS  Google Scholar 

  • N. Schaeffer, H. Passos, I. Billard, et al., Recovery of metals from waste electrical and electronic equipment (WEEE) using unconventional solvents based on ionic liquids. Crit. Rev. Environ. Sci. Technol. 48, 859–922 (2018)

    CAS  Google Scholar 

  • K.J. Schulz, J.H. DeYoung Jr., R.R. Seal, D.C. Bradley, Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply. U.S. Geological Survey Professional Paper 1802 (2017).

    Google Scholar 

  • B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195, 2419–2430 (2010)

    CAS  Google Scholar 

  • C. Shi, D. Duan, Y. Jia, Y. **g, A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 200, 191–195 (2014)

    CAS  Google Scholar 

  • C. Shi, Y. **g, Y. Jia, Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid. J. Mol. Liq. 215, 640–646 (2016)

    CAS  Google Scholar 

  • M.B. Shiflett, Commercial Applications of Ionic Liquids (Springer International Publishing, Cham, 2020)

    Google Scholar 

  • T. Stock, G. Seliger, Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP 40, 536–541 (2016)

    Google Scholar 

  • B. Swain, Recovery and recycling of lithium: a review. Sep. Purif. Technol. 172, 388–403 (2017)

    CAS  Google Scholar 

  • I. Tsiropoulos, D. Tarvydas, N. Lebedeva, Li-ion Batteries for Mobility And Stationary Storage Applications – Scenarios for Costs and Market Growth (Publications Office of the European Union, Luxembourg, 2018)

    Google Scholar 

  • Hoogerstraete T Vander, K. Binnemans, Highly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: a process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteries. Green Chem. 16, 1594–1606 (2014)

    Google Scholar 

  • Hoogerstraete T Vander, S. Wellens, K. Verachtert, K. Binnemans, Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recycling. Green Chem. 15, 919–927 (2013)

    Google Scholar 

  • S.P.M. Ventura, M. Gurbisz, M. Ghavre, et al., Imidazolium and pyridinium ionic liquids from mandelic acid derivatives: synthesis and bacteria and algae toxicity evaluation. ACS Sustain. Chem. Eng. 1, 393–402 (2013)

    CAS  Google Scholar 

  • S.P.M. Ventura, F.A. e Silva, M.V. Quental, et al., Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem. Rev. 117, 6984–7052 (2017)

    CAS  Google Scholar 

  • A.E. Visser, R.P. Swatloski, W.M. Reichert, et al., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem. Commun. 1, 135–136 (2001)

    Google Scholar 

  • S. Wellens, B. Thijs, K. Binnemans, An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids. Green Chem. 14, 1657–1665 (2012)

    CAS  Google Scholar 

  • A.S. Wells, V.T. Coombe, On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org. Process. Res. Dev. 10, 794–798 (2006)

    CAS  Google Scholar 

  • WHO (2011) Guidelines for Drinking-water Quality. World Heal Organ

    Google Scholar 

  • Wilburn, D.R., Material use in the United States – selected case studies for cadmium, cobalt, lithium, and nickel in rechargeable batteries (2008).

    Google Scholar 

  • World Economic Forum, A New Circular Vision for Electronics: Time for a Global Reboot (2019). http://www3.weforum.org/docs/WEF_A_New_Circular_Vision_for_Electronics.pdf

  • J. Ylä-Mella, E. Pongrácz, Drivers and constraints of critical materials recycling: the case of indium. Resources 5, 34–45 (2016)

    Google Scholar 

  • D. Zhao, Y. Liao, Z. Zhang, Toxicity of ionic liquids. Clean (Weinh) 35, 42–48 (2007)

    Google Scholar 

  • Y. Zhou, S. Boudesocque, A. Mohamadou, L. Dupont, Extraction of metal ions with task specific ionic liquids: influence of a coordinating anion. Sep. Sci. Technol. 50, 38–44 (2015)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Funding for Science and Technology (FCT) through the doctoral grant of Joana C. Almeida [SFRH/BD/139471/2018]. The authors acknowledge the financial support to LAQV-REQUIMTE and CICECO [UIDB/50006/2020; UIDB/50011/2020 & UIDP/50011/2020], financed by national funds through the Portuguese Foundation for Science and Technology/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana C. Almeida .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Almeida, J.C., Cardoso, C.E.D., Trindade, T., Freire, M.G., Pereira, E. (2022). Relevance on the Recovery of High Economic Value Elements and Potential of Ionic Liquids. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_98

Download citation

Publish with us

Policies and ethics

Navigation