Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Self-cleaning surfaces are ubiquitously found in nature. Development of materials and products with self-cleaning property is highly desirable in order to avoid the regular hassle of cleaning employing hazardous and costly chemicals. The self-cleaning technologies are primarily developed based on the mechanism of non-wettable (superhydrophobic) or extremely wettable (superhydrophilic) surfaces found in the nature creating self-cleaning phenomena as observed by lotus leaf, rose petal, pitcher plant, lizard skin, and fish scale among others. Superhydrophobic surfaces are generally rough surfaces with low surface energy and hierarchical nano-/micro-structured morphology. The rising demand for the self-cleaning products encouraged researchers to adopt simple, cost-effective, and robust techniques to generate superhydrophobic surfaces. To date, polymeric substrates are considered as the essential raw material to fabricate surface roughness, while their costly fabrication procedures advocate the search for alternative technologies. Fabrication of hierarchical surfaces through controlled assembly of designer small functional building blocks by employing the principles of molecular architectonics offers several advantages including low cost and high surface area coatings through solution processable technique. Herein, we summarize the strategies reported to fabricate superhydrophobic and self-cleaning surfaces through the scheme of molecular architectonics and provide future prospective toward the development of highly sophisticated and multipurpose self-cleaning materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhushan B, Jung YC (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  2. Konar M, Roy B, Govindaraju T (2020) Molecular architectonics-guided fabrication of superhydrophobic and self-cleaning materials. Adv Mater Interfaces 7:2000246

    Article  CAS  Google Scholar 

  3. Sarkar DK, Farzaneh M (2009) Superhydrophobic coatings with reduced ice adhesion. J Adhes Sci Technol 23:1215–1237

    Article  CAS  Google Scholar 

  4. Wang J, Chen H, Sui T, Li A, Chen D (2009) Investigation on hydrophobicity of lotus leaf: experiment and theory. Plant Sci 176:687–695

    Article  CAS  Google Scholar 

  5. Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: from materials to chemistry. J Am Chem Soc 138:1727–1748

    Article  CAS  Google Scholar 

  6. Liu Y, Chen X, **n JH (2008) Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment. Bioinspir Biomim 3:046007

    Article  Google Scholar 

  7. Bhushan B (2009) Biomimetics: lessons from nature–an overview. Philos Trans A Math Phys Eng Sci 367:1445–1486

    CAS  Google Scholar 

  8. Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19:3838–3843

    Article  CAS  Google Scholar 

  9. Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39:3240–3255

    Article  CAS  Google Scholar 

  10. Liu M, Jiang L (2010) Switchable adhesion on liquid/solid interfaces. Adv Funct Mater 20:3753–3764

    Article  CAS  Google Scholar 

  11. Long J, Fan P, Gong D, Jiang D, Zhang H, Li L, Zhong M (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces 7:9858–9865

    Article  CAS  Google Scholar 

  12. Ju J, **ao K, Yao X, Bai H, Jiang L (2013) Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection. Adv Mater 25:5937–5942

    Article  CAS  Google Scholar 

  13. Avinash MB, Govindaraju T (2014) Nanoarchitectonics of biomolecular assemblies for functional applications. Nanoscale 6:13348–13369

    Article  CAS  Google Scholar 

  14. Avinash MB, Samanta PK, Sandeepa KV, Pati SK, Govindaraju T (2013) Molecular architectonics of stereochemically constrained π-complementary functional modules. Eur J Org Chem 2013:5838–5847

    Article  CAS  Google Scholar 

  15. Govindaraju T, Avinash MB (2012) Two-dimensional nanoarchitectonics: organic and hybrid materials. Nanoscale 4:6102–6117

    Article  CAS  Google Scholar 

  16. Avinash MB, Swathi K, Narayan KS, Govindaraju T (2016) Molecular architectonics of naphthalenediimides for efficient structure–property correlation. ACS Appl Mater Interfaces 8:8678–8685

    Article  CAS  Google Scholar 

  17. Avinash MB, Govindaraju T (2018) Architectonics: design of molecular architecture for functional applications. Acc Chem Res 51:414–426

    Article  CAS  Google Scholar 

  18. Roy B, Govindaraju T (2019) Amino acids and peptides as functional components in arylenediimide-based molecular architectonics. Bull Chem Soc Jpn 92:1883–1901

    Article  CAS  Google Scholar 

  19. Manchineella S, Govindaraju T (2017) Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem 82:88–106

    Article  CAS  Google Scholar 

  20. Watson GS, Cribb BW, Watson JA (2010) How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4:129–136

    Article  CAS  Google Scholar 

  21. Govindaraju T (ed) (2019) Templated DNA nanotechnology: functional DNA nanoarchitectonics, 1st edn. Jenny Stanford Publishing

    Google Scholar 

  22. Pandeeswar M, Senanayak SP, Govindaraju T (2016) Nanoarchitectonics of small molecule and DNA for ultrasensitive detection of mercury. ACS Appl Mater Interfaces 8:30362–30371

    Article  CAS  Google Scholar 

  23. Manchineella S, Thrivikraman G, Khanum KK, Ramamurthy PC, Basu B, Govindaraju T (2016) Pigmented silk nanofibrous composite for skeletal muscle tissue engineering. Adv Healthcare Mater 5:1222–1232

    Article  CAS  Google Scholar 

  24. Avinash MB, Verheggen E, Schmuck C, Govindaraju T (2012) Self-cleaning functional molecular materials. Angew Chem Int Ed 51:10324–10328

    Article  CAS  Google Scholar 

  25. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans A Math Phys Eng Sci 367:1487–1509

    CAS  Google Scholar 

  26. Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–16

    Article  Google Scholar 

  27. Ming W, Wu D, van Benthem R, de With G (2005) Superhydrophobic films from Raspberry-like particles. Nano Lett 5:2298–2301

    Article  CAS  Google Scholar 

  28. Fürstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961

    Article  CAS  Google Scholar 

  29. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7:9804–9828

    Article  CAS  Google Scholar 

  30. Lim HS, Lee SG, Lee DH, Lee DY, Lee S, Cho K (2008) Superhydrophobic to superhydrophilic wetting transition with programmable ion-pairing interaction. Adv Mater 20:4438–4441

    Article  CAS  Google Scholar 

  31. **a F, Feng L, Wang S, Sun T, Song W, Jiang W, Jiang L (2006) Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv Mater 18:432–436

    Article  CAS  Google Scholar 

  32. Johnson RE, Dettre RH (1964) Contact angle hysteresis. Iii. Study of an idealized heterogeneous surface. J Phys Chem 68:1744–1750

    Article  CAS  Google Scholar 

  33. Woodward JT, Gwin H, Schwartz DK (2000) Contact angles on surfaces with mesoscopic chemical heterogeneity. Langmuir 16:2957–2961

    Article  CAS  Google Scholar 

  34. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  35. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460

    Article  CAS  Google Scholar 

  36. Bhushan B, Nosonovsky M (2010) The rose petal effect and the modes of superhydrophobicity. Philos Trans A Math Phys Eng Sci 368:4713–4728

    CAS  Google Scholar 

  37. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  CAS  Google Scholar 

  38. Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  39. Baxter S, Cassie ABD (1945) 8—The water repellency of fabrics and a new water repellency test. J Text Inst 36:T67–T90

    Article  CAS  Google Scholar 

  40. Pandeeswar M, Khare H, Ramakumar S, Govindaraju T (2015) Crystallographic insight-guided nanoarchitectonics and conductivity modulation of an n-type organic semiconductor through peptide conjugation. Chem Commun 51:8315–8318

    Article  CAS  Google Scholar 

  41. Pandeeswar M, Khare H, Ramakumar S, Govindaraju T (2014) Biomimetic molecular organization of naphthalene diimide in the solid state: tunable (chiro-) optical, viscoelastic and nanoscale properties. RSC Adv 4:20154–20163

    Article  CAS  Google Scholar 

  42. Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interf Sci 154:20–29

    Article  CAS  Google Scholar 

  43. Ariga K, Leong DT, Mori T (2018) Nanoarchitectonics for hybrid and related materials for bio-oriented applications. Adv Funct Mater 28:1702905

    Article  CAS  Google Scholar 

  44. Aono M, Ariga K (2016) The way to nanoarchitectonics and the way of nanoarchitectonics. Adv Mater 28:989–992

    Article  CAS  Google Scholar 

  45. Ariga K, Nishikawa M, Mori T, Takeya J, Shrestha LK, Hill JP (2019) Self-assembly as a key player for materials nanoarchitectonics. Sci Technol Adv Mater 20:51–95

    Article  CAS  Google Scholar 

  46. Avinash MB, Raut D, Mishra MK, Ramamurty U, Govindaraju T (2015) Bioinspired reductionistic peptide engineering for exceptional mechanical properties. Sci Rep 5:16070

    Article  CAS  Google Scholar 

  47. Ganesh VA, Raut HK, Nair AS, Ramakrishna S (2011) A review on self-cleaning coatings. J Mater Chem 21:16304–16322

    Article  CAS  Google Scholar 

  48. Widawski G, Rawiso M, François B (1994) Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 369:387–389

    Article  CAS  Google Scholar 

  49. Bunz UHF (2006) Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater 18:973–989

    Article  CAS  Google Scholar 

  50. Chiu Y-C, Kuo C-C, Lin C-J, Chen W-C (2011) Highly ordered luminescent microporous films prepared from crystalline conjugated rod-coil diblock copolymers of Pf-B-Psa and their superhydrophobic characteristics. Soft Matter 7:9350–9358

    Article  CAS  Google Scholar 

  51. Zou J, Chen H, Chunder A, Yu Y, Huo Q, Zhai L (2008) Preparation of a superhydrophobic and conductive nanocomposite coating from a carbon-nanotube-conjugated block copolymer dispersion. Adv Mater 20:3337–3341

    Article  CAS  Google Scholar 

  52. Zhang A, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115:9801–9868

    Article  CAS  Google Scholar 

  53. Ma H, Hao J (2011) Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chem Soc Rev 40:5457–5471

    Article  CAS  Google Scholar 

  54. Bai H, Du C, Zhang A, Li L (2013) Breath figure arrays: unconventional fabrications, functionalizations, and applications. Angew Chem Int Ed 52:12240–12255

    Article  CAS  Google Scholar 

  55. Manchineella S, Prathyusha V, Priyakumar UD, Govindaraju T (2013) Solvent-induced helical assembly and reversible chiroptical switching of chiral cyclic-dipeptide-functionalized naphthalenediimides. Chem Eur J 19:16615–16624

    Article  CAS  Google Scholar 

  56. Pandeeswar M, Govindaraju T (2013) Green-fluorescent naphthalene diimide: conducting layered hierarchical 2d nanosheets and reversible probe for detection of aromatic solvents. RSC Adv 3:11459–11462

    Article  CAS  Google Scholar 

  57. Avinash MB, Govindaraju T (2012) Amino acid derivatized arylenediimides: a versatile modular approach for functional molecular materials. Adv Mater 24:3905–3922

    Article  CAS  Google Scholar 

  58. Pandeeswar M, Senanayak SP, Narayan KS, Govindaraju T (2016) Multi-stimuli-responsive charge-transfer hydrogel for room-temperature organic ferroelectric thin-film devices. J Am Chem Soc 138:8259–8268

    Article  CAS  Google Scholar 

  59. Avinash MB, Govindaraju T (2011) Engineering molecular organization of naphthalenediimides: large nanosheets with metallic conductivity and attoliter containers. Adv Funct Mater 21:3875–3882

    Article  CAS  Google Scholar 

  60. Adler-Abramovich L, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893

    Article  CAS  Google Scholar 

  61. Lee JS, Ryu J, Park CB (2009) Bio-inspired fabrication of superhydrophobic surfaces through peptide self-assembly. Soft Matter 5:2717–2720

    Article  CAS  Google Scholar 

  62. Liu Y-C, Huang W-J, Wu S-H, Lee M, Yeh J-M, Chen H-H (2018) Excellent superhydrophobic surface and anti-corrosion performance by nanostructure of discotic columnar liquid crystals. Corros Sci 138:1–7

    Article  CAS  Google Scholar 

  63. Gao Q, He L, Li Y, Ran X, Guo L (2017) Controllable wettability and adhesion of superhydrophobic self-assembled surfaces based on a novel azobenzene derivative. RSC Adv 7:50403–50409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimmaiah Govindaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konar, M., Govindaraju, T. (2022). Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_4

Download citation

Publish with us

Policies and ethics

Navigation