Metabolomics in Rice Improvement

  • Chapter
  • First Online:
Applications of Bioinformatics in Rice Research

Abstract

Metabolomics is the analysis of micro-biomolecules related to the metabolic processes of a living organism. It has a strong connection between the genotype and phenotype of an organism. Metabolomics is like other “omics” technologies and can handle large-scale, complex, and dynamic databases. As a result, various data processing techniques are needed to retrieve biologically relevant knowledge from a living organism. Those data processing workflows of metabolomics research are typically complicated and require many phases or steps. This chapter will address the application and role of metabolites in the growth, development, and produce chemical compounds for defense against biotic and abiotic stress of rice and other crops. Hence, it is important to know the metabolic process of plants under different environmental conditions. Thus, metabolomic techniques may be used to elucidate the roles of unknown genes by using natural variations and mutations in target plants. These metabolomic methods could be useful in crop breeding, where important plant traits like taste, yield, and grain yield quality are strongly linked to metabolic conditions. Various data analysis techniques are used for metabolomics studies and metabolomics experiments. These methods can identify specific metabolites that help to improve stress resistance and disease resistance. We also discuss the several available computational techniques and tools that can assist in the biological interpretation of metabolomics data. We also introduce emerging methods for designing genome-scale metabolic models to analyze cellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

AAA:

Aromatic amino acids

ADH:

Arogenate dehydrogenase

BL-SOM:

Batch-learning self-organizing map

CE:

Capillary electrophoresis

CE-MS:

Capillary electrophoresis-mass spectrometry

CT:

Cold tolerance

DAD:

Diode array detector

DIMS:

Direct infusion mass spectrometry

FT-ICR:

Fourier transform ion cyclotron resonance

GABA:

Gluconeogenesis-aminobutyric acid

GC-MS:

Gas chromatography-mass spectrometry

GM:

Genetically modified

HPTLC:

High-performance thin-layer chromatography

HRMS:

High-resolution mass spectrometry

LC:

Liquid chromatography

LC-MS:

Liquid chromatography-mass spectrometry

LT:

Low-temperature

MS:

Mass-spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

PCA:

Principal component analysis

PGPR:

Plant growth-promoting rhizobacteria

PLS-DA:

Partial least squares discriminant analysis

SAR:

Systemic acquired resistance

TOF:

Time-of-flight

UPLC:

Ultra-performance liquid chromatography

WRC:

World Rice Core

References

  1. FAO. FAO: Rice Market Monitor (RMM). 2018. http://www.fao.org/economic/est/publications/rice-publications/rice-market-monitor-rmm/en/. Accessed 26 Apr 2021.

  2. Kennedy G, Burlingame B. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem. 2003;80:589–96.

    Article  CAS  Google Scholar 

  3. Vlachos A, Arvanitoyannis IS. A review of rice authenticity/adulteration methods and results. Crit Rev Food Sci Nutr. 2008;48:553–98.

    Article  PubMed  Google Scholar 

  4. Burgess K, Rankin N, Weidt S. Chapter 10 - Metabolomics. In: Padmanabhan S, editor. Handbook of pharmacogenomics and stratified medicine. San Diego, CA: Academic Press; 2014. p. 181–205. https://www.sciencedirect.com/science/article/pii/B9780123868824000104.

    Chapter  Google Scholar 

  5. Lamichhane S, Sen P, Dickens AM, Hyötyläinen T, Orešič M. Chapter Fourteen - An overview of metabolomics data analysis: current tools and future perspectives. In: Jaumot J, Bedia C, Tauler R, editors. Comprehensive analytical chemistry. Amsterdam: Elsevier; 2018. p. 387–413. https://www.sciencedirect.com/science/article/pii/S0166526X18300655.

    Google Scholar 

  6. Fernie AR, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality. Curr Opin Plant Biol. 2006;9:196–202.

    Article  PubMed  Google Scholar 

  7. Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci. 2006;11:344–50.

    Article  CAS  PubMed  Google Scholar 

  8. Yonekura-Sakakibara K, Saito K. Review: genetically modified plants for the promotion of human health. Biotechnol Lett. 2006;28:1983–91.

    Article  CAS  PubMed  Google Scholar 

  9. Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol. 2007;63:351–64.

    Article  CAS  PubMed  Google Scholar 

  10. Oikawa A, Matsuda F, Kusano M, Okazaki Y, Saito K. Rice metabolomics. Rice. 2008;1:63–71.

    Article  Google Scholar 

  11. Ashikari M. Cytokinin oxidase regulates rice grain production. Science. 2005;309:741–5.

    Article  CAS  PubMed  Google Scholar 

  12. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815.

    Article  Google Scholar 

  13. Goff SA. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002;296:92–100.

    Article  CAS  PubMed  Google Scholar 

  14. Yu J. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science. 2002;296:79–92.

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, et al. The genome sequence and structure of rice chromosome 1. Nature. 2002;420:312–6.

    Article  CAS  PubMed  Google Scholar 

  16. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800.

    Article  CAS  Google Scholar 

  17. Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.

    Article  CAS  PubMed  Google Scholar 

  18. Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond. Phytochemistry. 2003;62:815–6.

    Article  CAS  PubMed  Google Scholar 

  19. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9:418–25.

    Article  CAS  PubMed  Google Scholar 

  20. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–61.

    Article  CAS  PubMed  Google Scholar 

  21. Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003;62:817–36.

    Article  CAS  PubMed  Google Scholar 

  22. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol. 2004;5:763–9.

    Article  CAS  PubMed  Google Scholar 

  23. Fukusaki E, Kobayashi A. Plant metabolomics: potential for practical operation. J Biosci Bioeng. 2005;100:347–54.

    Article  CAS  PubMed  Google Scholar 

  24. Saito K, Dixon RA, Willmitzer L, editors. Plant metabolomics. Berlin: Springer; 2006. https://doi.org/10.1007/3-540-29782-0.

    Book  Google Scholar 

  25. Fiehn O. Metabolite profiling in Arabidopsis. Methods Mol Biol. 2006;323:439–47.

    CAS  PubMed  Google Scholar 

  26. Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6:4716–23.

    Article  CAS  PubMed  Google Scholar 

  27. Lisec J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1:387–96.

    Article  CAS  PubMed  Google Scholar 

  28. Chen C, Gonzalez FJ, Idle JR. LC-MS-based metabolomics in drug metabolism. Drug Metab Rev. 2007;39:581–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26:51–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saito K, Hirai MY, Yonekura-Sakakibara K. Decoding genes with coexpression networks and metabolomics – ‘majority report by precogs’. Trends Plant Sci. 2008;13:36–43.

    Article  CAS  PubMed  Google Scholar 

  31. Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, et al. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. OMICS. 2002;6:217–34.

    Article  CAS  PubMed  Google Scholar 

  32. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2:488–94.

    Article  CAS  PubMed  Google Scholar 

  33. Kristensen C, Morant M, Olsen CE, Ekstrøm CT, Galbraith DW, Møller BL, et al. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci U S A. 2005;102:1779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, et al. A Liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol. 2006;141:1205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sato S, Soga T, Nishioka T, Tomita M. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J. 2004;40:151–63.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T, et al. Evaluation of metabolic alteration in transgenic rice overexpressing dihydroflavonol-4-reductase. Ann Bot. 2006;98:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Oikawa A, Nakamura Y, Ogura T, Kimura A, Suzuki H, Sakurai N, et al. Clarification of pathway-specific inhibition by fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenoty** studies. Plant Physiol. 2006;142:398–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura Y, Kimura A, Saga H, Oikawa A, Shinbo Y, Kai K, et al. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta. 2007;227:57–66.

    Article  CAS  PubMed  Google Scholar 

  39. Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P, Moritz T, et al. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenoty** of natural variants in rice. J Chromatogr B. 2007;855:71–9.

    Article  CAS  Google Scholar 

  40. Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot. 2005;56:255–65.

    Article  CAS  PubMed  Google Scholar 

  41. Sekiyama Y, Kikuchi J. Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry. 2007;68:2320–9.

    Article  CAS  PubMed  Google Scholar 

  42. Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ, Sweetlove LJ, et al. Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot. 2005;56:287–96.

    Article  CAS  PubMed  Google Scholar 

  43. Dunn WB, Overy S, Quick WP. Evaluation of automated electrospray-TOF mass spectrometry for metabolic fingerprinting of the plant metabolome. Metabolomics. 2005;1:137–48.

    Article  CAS  Google Scholar 

  44. Johnson HE, Broadhurst D, Kell DB, Theodorou MK, Merry RJ, Griffith GW. High-throughput metabolic fingerprinting of legume silage fermentations via fourier transform infrared spectroscopy and chemometrics. Appl Environ Microbiol. 2004;70:1583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suzuki H, Sasaki R, Ogata Y, Nakamura Y, Sakurai N, Kitajima M, et al. Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry. 2008;69:99–111.

    Article  CAS  PubMed  Google Scholar 

  46. Iijima Y, Nakamura Y, Ogata Y, Tanaka K, Sakurai N, Suda K, et al. Metabolite annotations based on the integration of mass spectral information. Plant J. 2008;54:949–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dwivedi P, Wu P, Klopsch SJ, Puzon GJ, Xun L, Hill HH. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics. 2008;4:63–80.

    Article  CAS  Google Scholar 

  48. Matsuda F, Okazaki Y, Oikawa A, Kusano M, Nakabayashi R, Kikuchi J, et al. Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J. 2012;70:624–36.

    Article  CAS  PubMed  Google Scholar 

  49. Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, et al. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. J Exp Bot. 2012;63:3749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi T, Zhu A, Jia J, Hu X, Chen J, Liu W, et al. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. Plant J. 2020;103:279–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wen W, Li K, Alseekh S, Omranian N, Zhao L, Zhou Y, et al. Genetic Determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell. 2015;27:1839–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hill CB, Taylor JD, Edwards J, Mather D, Bacic A, Langridge P, et al. Whole-genome map** of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment. Plant Physiol. 2013;162:1266–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li K, Wen W, Alseekh S, Yang X, Guo H, Li W, et al. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. Plant J. 2019;99:216–30.

    CAS  PubMed  Google Scholar 

  54. Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CWB, Mumm R, Bouwmeester H, et al. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol. 2012;158:1306–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, et al. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics. 2019;15:46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420416/.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Vallarino JG, Pott DM, Cruz-Rus E, Miranda L, Medina-Minguez JJ, Valpuesta V, et al. Identification of quantitative trait loci and candidate genes for primary metabolite content in strawberry fruit. Hortic Res. 2019;6:1–17.

    Article  CAS  Google Scholar 

  57. Labadie M, Vallin G, Petit A, Ring L, Hoffmann T, Gaston A, et al. Metabolite quantitative trait loci for flavonoids provide new insights into the genetic architecture of strawberry (Fragaria × ananassa) fruit quality. J Agric Food Chem. 2020;68:6927–39.

    Article  CAS  PubMed  Google Scholar 

  58. Feng J, Long Y, Shi L, Shi J, Barker G, Meng J. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol. 2012;193:96–108.

    Article  CAS  PubMed  Google Scholar 

  59. Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krystkowiak K, et al. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J. 2017;89:898–913.

    Article  CAS  PubMed  Google Scholar 

  60. Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. 2015;27:485–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hamzehzarghani H, Paranidharan V, Abu-Nada Y, Kushalappa AC, Mamer O, Somers D. Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance to fusarium head blight. Can J Plant Sci. 2011;88:789. https://doi.org/10.4141/CJPS07209.

    Article  Google Scholar 

  62. Dong X, Gao Y, Chen W, Wang W, Gong L, Liu X, et al. Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Mol Plant. 2015;8:111–21.

    Article  CAS  PubMed  Google Scholar 

  63. Chen W, Gao Y, **e W, Gong L, Lu K, Wang W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46:714–21.

    Article  CAS  PubMed  Google Scholar 

  64. Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, et al. Genome-wide association map** of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci U S A. 2012;109:8872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Slaten ML, Yobi A, Bagaza C, Chan YO, Shrestha V, Holden S, et al. mGWAS uncovers Gln-glucosinolate seed-specific interaction and its role in metabolic homeostasis. Plant Physiol. 2020;183:483–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Joseph B, Corwin JA, Li B, Atwell S, Kliebenstein DJ. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. elife. 2013;2:e00776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chen J, Hu X, Shi T, Yin H, Sun D, Hao Y, et al. Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels. Plant Biotechnol J. 2020;18:1722–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ying S, Su M, Wu Y, Zhou L, Fu R, Li Y, et al. Trichome regulator SlMIXTA-like directly manipulates primary metabolism in tomato fruit. Plant Biotechnol J. 2020;18:354–63.

    Article  CAS  PubMed  Google Scholar 

  69. Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J, et al. Genome-wide analysis of branched-chain amino acid levels in arabidopsis seeds. Plant Cell. 2013;25:4827–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet. 2013;45:43–50.

    Article  CAS  PubMed  Google Scholar 

  71. Shen M, Broeckling CD, Chu EY, Ziegler G, Baxter IR, Prenni JE, et al. Leveraging non-targeted metabolite profiling via statistical genomics. PLoS One. 2013;8:e57667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Papageorgiou L, Eleni P, Raftopoulou S, Mantaiou M, Megalooikonomou V, Vlachakis D. Genomic big data hitting the storage bottleneck. EMBnet J. 2018;24:e910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958914/.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Arita M. Additional paper: computational resources for metabolomics. Brief Funct Genomic Proteomic. 2004;3:84–93.

    Article  CAS  PubMed  Google Scholar 

  74. Codrea MC, Jiménez CR, Heringa J, Marchiori E. Tools for computational processing of LC–MS datasets: a user’s perspective. Comput Methods Prog Biomed. 2007;86:281–90.

    Article  Google Scholar 

  75. Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita M, et al. KNApSAcK: a comprehensive species-metabolite relationship database. In: Saito K, Dixon RA, Willmitzer L, editors. Plant metabolomics. Berlin: Springer; 2006. p. 165–81. https://doi.org/10.1007/3-540-29782-0_13.

    Chapter  Google Scholar 

  76. Takahashi H, Hotta Y, Hayashi M, Kawai-Yamada M, Komatsu S, Uchimiya H. High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol. 2005;22:47–50.

    Article  CAS  Google Scholar 

  77. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005;102:14458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, et al. A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J. 2006;4:381–92.

    Article  CAS  PubMed  Google Scholar 

  79. Dixon RA, Gang DR, Charlton AJ, Fiehn O, Kuiper HA, Reynolds TL, et al. Applications of metabolomics in agriculture. Agric Food Chem. 2006;54:8984–94.

    Article  CAS  Google Scholar 

  80. Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J Exp Bot. 2007;58:415–24.

    Article  CAS  PubMed  Google Scholar 

  81. Moco S, Capanoglu E, Tikunov Y, Bino RJ, Boyacioglu D, Hall RD, et al. Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J Exp Bot. 2007;58:4131–46.

    Article  CAS  PubMed  Google Scholar 

  82. Parveen I, Moorby JM, Fraser MD, Allison GG, Kopka J. Application of gas chromatography–mass spectrometry metabolite profiling techniques to the analysis of heathland plant diets of sheep. J Agric Food Chem. 2007;55:1129–38.

    Article  CAS  PubMed  Google Scholar 

  83. Grata E, Boccard J, Glauser G, Carrupt P-A, Farmer EE, Wolfender J-L, et al. Development of a two-step screening ESI-TOF-MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: the wound response in Arabidopsis thaliana as a case study. J Sep Sci. 2007;30:2268–78.

    Article  CAS  PubMed  Google Scholar 

  84. Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, et al. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem. 2004;76:1738–45.

    Article  CAS  PubMed  Google Scholar 

  85. Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2004;101:10205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, et al. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem. 2005;280:25590–5.

    Article  CAS  PubMed  Google Scholar 

  87. Kok EJ, Kuiper HA. Comparative safety assessment for biotech crops. Trends Biotechnol. 2003;21:439–44.

    Article  CAS  PubMed  Google Scholar 

  88. Kojima Y, Ebana K, Fukuoka S, Nagamine T, Kawase M. Development of an RFLP-based rice diversity research set of germplasm. Breed Sci. 2005;55:431–40.

    Article  CAS  Google Scholar 

  89. Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE. Metabolomic analysis in food science: a review. Trends Food Sci Technol. 2009;20:557–66.

    Article  CAS  Google Scholar 

  90. Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 2009;25:39–48.

    Article  CAS  PubMed  Google Scholar 

  91. Hu C, Shi J, Quan S, Cui B, Kleessen S, Nikoloski Z, et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci Rep. 2014;4:5067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lawas LMF, Li X, Erban A, Kopka J, Jagadish SK, Zuther E, et al. Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. GigaScience. 2019;8:giz050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tarpley L, Duran AL, Kebrom TH, Sumner LW. Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol. 2005;5:1–12.

    Article  CAS  Google Scholar 

  94. Fan TW-M, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry. 2001;57:209–21.

    Article  CAS  PubMed  Google Scholar 

  95. Ghiasvand AR, Setkova L, Pawliszyn J. Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME–GC–TOF–MS. Flav Frag J. 2007;22:377–91.

    Article  CAS  Google Scholar 

  96. Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant. 2015;8:58–67.

    Article  CAS  PubMed  Google Scholar 

  97. Zuther E, Koehl K, Kopka J. Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Advances in molecular breeding toward drought and salt tolerant crops. New York, NY: Springer; 2007. p. 285–315.

    Chapter  Google Scholar 

  98. Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant. 2013;6:1769–80.

    Article  CAS  PubMed  Google Scholar 

  99. Schauer N, Fernie AR. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 2006;11:508–16.

    Article  CAS  PubMed  Google Scholar 

  100. Li J, Niu X, Pei G, Sui X, Zhang X, Chen L, et al. Identification and metabolomic analysis of chemical modulators for lipid accumulation in Crypthecodinium cohnii. Bioresour Technol. 2015;191:362–8.

    Article  CAS  PubMed  Google Scholar 

  101. Allwood JW, Ellis DI, Goodacre R. Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol Plant. 2008;132:117–35.

    CAS  PubMed  Google Scholar 

  102. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J. 2012;70:39–50.

    Article  CAS  PubMed  Google Scholar 

  103. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Compar Funct Genom. 2001;2:155–68.

    Article  CAS  Google Scholar 

  104. Nielsen J, Oliver S. The next wave in metabolome analysis. Trends Biotechnol. 2005;23:544–6.

    Article  CAS  PubMed  Google Scholar 

  105. Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.

    Article  PubMed  CAS  Google Scholar 

  106. Bolten CJ, Kiefer P, Letisse F, Portais J-C, Wittmann C. Sampling for metabolome analysis of microorganisms. Anal Chem. 2007;79:3843–9.

    Article  CAS  PubMed  Google Scholar 

  107. Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: a way forward for crop improvement. Metabolites. 2019;9:303.

    Article  CAS  PubMed Central  Google Scholar 

  108. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–608.

    Article  CAS  PubMed  Google Scholar 

  109. Fàbregas N, Fernie AR. The metabolic response to drought. J Exp Bot. 2019;70:1077–85.

    Article  PubMed  CAS  Google Scholar 

  110. Thomas V. Phenylpropanoid Biosynthesis. Mol Plant. 2010;3:2–20.

    Article  CAS  Google Scholar 

  111. Todaka A, Umehara R, Sasaki K, Serizawa M, Urakami K, Kusuhara M, et al. Metabolic profiling of gemcitabine- and paclitaxel-treated immortalized human pancreatic cell lines with K-RASG12D. Biomed Res. 2017;38:29–40.

    Article  CAS  PubMed  Google Scholar 

  112. Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav. 2014;9:e29518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wu H, Liu X, Zhang X, Ji C, Zhao J, Yu J. Proteomic and metabolomic responses of clam Ruditapes philippinarum to arsenic exposure under different salinities. Aquat Toxicol. 2013;136–137:91–100.

    Article  PubMed  CAS  Google Scholar 

  114. Gupta P, De B. Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties. Plant Signal Behav. 2017;12:e1335845.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wanichthanarak K, Boonchai C, Kojonna T, Chadchawan S, Sangwongchai W, Thitisaksakul M. Deciphering rice metabolic flux reprograming under salinity stress via in silico metabolic modeling. Comput Struct Biotechnol J. 2020;18:3555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, et al. Metabolic dynamics of develo** rice seeds under high night-time temperature stress. Front Plant Sci. 2019;10:1443. https://doi.org/10.3389/fpls.2019.01443.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK. Metabolomics of temperature stress. Physiol Plant. 2008;132:220–35.

    CAS  PubMed  Google Scholar 

  118. Yang M, Yang J, Su L, Sun K, Li D, Liu Y, et al. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci. 2019;289:110282.

    Article  CAS  PubMed  Google Scholar 

  119. Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon J-S. Proteomics and metabolomics studies on the biotic stress responses of rice: an update. Rice. 2021;14:30.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tugizimana F, Piater L, Dubery I. Plant metabolomics: a new frontier in phytochemical analysis. S Afr J Sci. 2013;109:01–11.

    Article  CAS  Google Scholar 

  121. Hong J, Yang L, Zhang D, Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci. 2016;17:767.

    Article  PubMed Central  CAS  Google Scholar 

  122. Niederbacher B, Winkler JB, Schnitzler JP. Volatile organic compounds as non-invasive markers for plant phenoty**. J Exp Bot. 2015;66:5403–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pati, P., Donde, R., Sabarinathan, S., Gouda, G., Gupta, M.K., Rathore, S.K. (2021). Metabolomics in Rice Improvement. In: Gupta, M.K., Behera, L. (eds) Applications of Bioinformatics in Rice Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-3997-5_4

Download citation

Publish with us

Policies and ethics

Navigation