Artificial Intelligence and Machine Learning in Rice Research

  • Chapter
  • First Online:
Applications of Bioinformatics in Rice Research

Abstract

Food security is a significant challenge for emerging and underdeveloped countries all over the world. The world’s population is growing tremendously; therefore, more food will be required to fulfill their needs. As a result, farmers and breeders put more pressure on agricultural land to produce more food grains. Rice is a primary food crop for 1.3 billion people globally, with Asia contributing for 90% of rice production and consumption. In undeveloped nations, the majority of farmers rely on traditional farming methods, which are insufficient to meet rising food grain demand. Their poor farming methods must be wreaking havoc on the land by utilizing more harmful pesticides and chemical fertilizers. As a result, a destructive impact on soil microfauna and flora affects soil nutritional quality, agricultural practices, and the soil becomes barren with the loss of fertility. In the future, agriculture automation is a big concern for all countries to feed and provide food security to their population. This book chapter focuses on evaluating and exploring a variety of published solutions, methods, and perspectives on “artificial intelligence (AI),” “machinelearning”, “big data applications”, and “high-performance computing,” which have opened up new avenues for data-intensive research (ML) in multidisciplinary agro-technology. Thus, there is an immediate need for various automation methods to decode rice and other crop cultivation problems, farm management, agricultural practices, irrigation, fertilization, weeding, harvesting, marketing, food distributions, toxic pesticides, regulated drainage, emissions regulation, and environmental impact. The automation of farming activities will help to improve soil benefits and strengthening soil fertility. Therefore, the advancing practical application and solutions pave the way for a modern data-centric age of agriculture exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

KNN:

k-nearest neighbor

LARS:

Least-angle regression

LASSO:

Least absolute shrinkage and selection operator

LOESS:

Locally estimated scatterplot smoothing

LVQ:

Learning vector quantization

LWL:

Locally weighted learning

MARS:

Multivariate adaptive regression splines

ML:

Machine learning

MLR:

Multiple linear regression

OLSR:

Ordinary least squares regression

PCA:

Principal component analysis

PCR:

Principal component regression

PLS:

Partial least squares regression

SOM:

Self-organizing map

SVM:

Support vector machines

References

  1. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kesavan PC, Swaminathan MS. Managing extreme natural disasters in coastal areas. Philos Trans R Soc A Math Phys Eng Sci. 2006;364:2191–216.

    Article  CAS  Google Scholar 

  3. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203:32–43.

    Article  PubMed  Google Scholar 

  4. Timsina J, Connor DJ. Productivity and management of rice–wheat crop** systems: issues and challenges. Field Crop Res. 2001;69:93–132.

    Article  Google Scholar 

  5. Petersen PE. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century–the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol. 2003;31:3–24.

    Article  PubMed  Google Scholar 

  6. Fogel RW. The escape from hunger and premature death, 1700-2100: Europe, America, and the Third World. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  7. Long SP, Marshall-Colon A, Zhu X-G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell. 2015;161:56–66.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci. 2020;21:2590.

    Article  CAS  PubMed Central  Google Scholar 

  9. Brown KH, Jameton AL. Public health implications of urban agriculture. J Public Health Policy. 2000;21:20–39.

    Article  CAS  PubMed  Google Scholar 

  10. Carvalho FP. Agriculture, pesticides, food security and food safety. Environ Sci Pol. 2006;9:685–92.

    Article  Google Scholar 

  11. Chowdhury A, Pradhan S, Saha M, Sanyal N. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol. 2008;48:114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spielman DJ, von Grebmer K. Public-private partnerships in agricultural research: an analysis of challenges facing industry and the Consultative Group on International Agricultural Research. Washington, DC: The International Food Policy Research Institute; 2004.

    Google Scholar 

  13. Dwivedy N. Challenges faced by the agriculture sector in develo** countries with special reference to India. Int J Rural Stud. 2011;18

    Google Scholar 

  14. Talaviya T, Shah D, Patel N, Yagnik H, Shah M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif Intell Agric. 2020;4:58–73.

    Google Scholar 

  15. Wittek P. 2 - Machine learning. In: Wittek P, editor. Quantum machine learning. Boston, MA: Academic Press; 2014. p. 11–24. https://www.sciencedirect.com/science/article/pii/B9780128009536000025.

    Chapter  Google Scholar 

  16. Araus JL, Cairns JE. Field high-throughput phenoty**: the new crop breeding frontier. Trends Plant Sci. 2014;19:52–61.

    Article  CAS  PubMed  Google Scholar 

  17. Holman FH, Riche AB, Michalski A, Castle M, Wooster MJ, Hawkesford MJ. High throughput field phenoty** of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016;8:1031.

    Article  Google Scholar 

  18. Davis KF, Gephart JA, Emery KA, Leach AM, Galloway JN, D’Odorico P. Meeting future food demand with current agricultural resources. Glob Environ Chang. 2016;39:125–32.

    Article  Google Scholar 

  19. Van Evert FK, Fountas S, Jakovetic D, Crnojevic V, Travlos I, Kempenaar C. Big Data for weed control and crop protection. Weed Res. 2017;57:218–33.

    Article  Google Scholar 

  20. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: a review. Sensors. 2018;18:2674.

    Article  PubMed Central  Google Scholar 

  21. Ahir K, Govani K, Gajera R, Shah M. Application on virtual reality for enhanced education learning, military training and sports. Augment Hum Res. 2019;5:7.

    Article  Google Scholar 

  22. Plessen MG. Freeform path fitting for the minimisation of the number of transitions between headland path and interior lanes within agricultural fields. Ar**v. 2019. http://arxiv.org/abs/1910.12034. Accessed 11 Apr 2021.

  23. Cioffi R, Travaglioni M, Piscitelli G, Petrillo A, De Felice F. Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability. 2020;12:492.

    Article  Google Scholar 

  24. Pearson FRSK. LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci. 1901;2:559–72.

    Article  Google Scholar 

  25. Wold H. Systems analysis by partial least squares. CP-83-046. Laxenburg: IIASA; 1983. http://pure.iiasa.ac.at/id/eprint/2336/. Accessed 17 Mar 2021.

    Google Scholar 

  26. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugenics. 1936;7:179–88.

    Article  Google Scholar 

  27. López-Cortés XA, Nachtigall FM, Olate VR, Araya M, Oyanedel S, Diaz V, et al. Fast detection of pathogens in salmon farming industry. Aquaculture. 2017;470:17–24.

    Article  CAS  Google Scholar 

  28. Zhou C, Lin K, Xu D, Chen L, Guo Q, Sun C, et al. Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Comput Electron Agric. 2018;146:114–24.

    Article  Google Scholar 

  29. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35:W345–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mackowiak SD, Zauber H, Bielow C, Thiel D, Kutz K, Calviello L, et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 2015;16:1–21.

    Article  CAS  Google Scholar 

  31. Wildenhain J, Spitzer M, Dolma S, Jarvik N, White R, Roy M, et al. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst. 2015;1:383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richardson A, Signor BM, Lidbury BA, Badrick T. Clinical chemistry in higher dimensions: machine-learning and enhanced prediction from routine clinical chemistry data. Clin Biochem. 2016;49:1213–20.

    Article  CAS  PubMed  Google Scholar 

  33. Fang K, Shen C, Kifer D, Yang X. Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys Res Lett. 2017;44:11–030.

    Article  Google Scholar 

  34. Barboza F, Kimura H, Altman E. Machine learning models and bankruptcy prediction. Expert Syst Appl. 2017;83:405–17.

    Article  Google Scholar 

  35. Bohanec M, Borštnar MK, Robnik-Šikonja M. Explaining machine learning models in sales predictions. Expert Syst Appl. 2017;71:416–28.

    Article  Google Scholar 

  36. Fragni R, Trifirò A, Nucci A, Seno A, Allodi A, Di Rocco M. Italian tomato-based products authentication by multi-element approach: a mineral elements database to distinguish the domestic provenance. Food Control. 2018;93:211–8.

    Article  CAS  Google Scholar 

  37. Maione C, Barbosa RM. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: a review. Crit Rev Food Sci Nutr. 2019;59:1868–79.

    Article  CAS  PubMed  Google Scholar 

  38. Kang J, Schwartz R, Flickinger J, Beriwal S. Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. Int J Radiat Oncol Biol Phys. 2015;93:1127–35.

    Article  PubMed  Google Scholar 

  39. Aybar-Ruiz A, Jiménez-Fernández S, Cornejo-Bueno L, Casanova-Mateo C, Sanz-Justo J, Salvador-González P, et al. A novel grou** genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. Sol Energy. 2016;132:129–42.

    Article  Google Scholar 

  40. Cramer S, Kampouridis M, Freitas AA, Alexandridis AK. An extensive evaluation of seven machine learning methods for rainfall prediction in weather derivatives. Expert Syst Appl. 2017;85:169–81.

    Article  Google Scholar 

  41. Gastaldo P, Pinna L, Seminara L, Valle M, Zunino R. A tensor-based approach to touch modality classification by using machine learning. Robot Auton Syst. 2015;63:268–78.

    Article  Google Scholar 

  42. Takahashi K, Kim K, Ogata T, Sugano S. Tool-body assimilation model considering gras** motion through deep learning. Robot Auton Syst. 2017;91:115–27.

    Article  Google Scholar 

  43. Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B Methodol. 1958;20:215–32.

    Google Scholar 

  44. Efroymson MA. Multiple regression analysis. In: Mathematical methods for digital computers; 1960. p. 191–203.

    Google Scholar 

  45. Craven BD, Islam SM. Ordinary least-squares regression. In: The SAGE dictionary of quantitative management research. Thousand Oaks, CA: SAGE Publications; 2011. p. 224–8.

    Google Scholar 

  46. Friedman JH. Multivariate adaptive regression splines. Ann Stat. 1991;1:1–67.

    Google Scholar 

  47. Quinlan JR. Learning with continuous classes. In: Proceedings of Australian Joint Conference on Artificial Intelligence. Singapore: World Scientific; 1992. p. 343–8.

    Google Scholar 

  48. Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74:829–36.

    Article  Google Scholar 

  49. Plant RE. An artificial intelligence based method for scheduling crop management actions. Agric Syst. 1989;31:127–55.

    Article  Google Scholar 

  50. Lal H, Jones JW, Peart RM, Shoup WD. FARMSYS—a whole-farm machinery management decision support system. Agric Syst. 1992;38:257–73.

    Article  Google Scholar 

  51. Papageorgiou EI, Markinos AT, Gemtos TA. Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl Soft Comput. 2011;11:3643–57.

    Article  Google Scholar 

  52. Zhang C, Liu J, Shang J, Cai H. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation. Sci Total Environ. 2018;631–632:677–87.

    Article  PubMed  CAS  Google Scholar 

  53. Goap A, Sharma D, Shukla AK, Rama KC. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput Electron Agric. 2018;155:41–9.

    Article  Google Scholar 

  54. Mehra M, Saxena S, Sankaranarayanan S, Tom RJ, Veeramanikandan M. IoT based hydroponics system using Deep Neural Networks. Comput Electron Agric. 2018;155:473–86.

    Article  Google Scholar 

  55. Goldstein A, Fink L, Meitin A, Bohadana S, Lutenberg O, Ravid G. Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precis Agric. 2018;19:421–44.

    Article  Google Scholar 

  56. Kaneda Y, Shibata S, Mineno H. Multi-modal sliding window-based support vector regression for predicting plant water stress. Knowl-Based Syst. 2017;134:135–48.

    Article  Google Scholar 

  57. Chlingaryan A, Sukkarieh S, Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comput Electron Agric. 2018;151:61–9.

    Article  Google Scholar 

  58. Sirsat MS, Cernadas E, Fernández-Delgado M, Barro S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput Electron Agric. 2018;154:120–33.

    Article  Google Scholar 

  59. Behera SK, Rath AK, Sethy PK. Maturity status classification of papaya fruits based on machine learning and transfer learning approach. Inf Process Agric. 2020. https://www.sciencedirect.com/science/article/pii/S2214317320300044. Accessed 26 Mar 2021.

  60. Caladcad JA, Cabahug S, Catamco MR, Villaceran PE, Cosgafa L, Cabizares KN, et al. Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal. Comput Electron Agric. 2020;172:105327.

    Article  Google Scholar 

  61. Faisal M, Alsulaiman M, Arafah M, Mekhtiche MA. IHDS: intelligent harvesting decision system for date fruit based on maturity stage using deep learning and computer vision. IEEE Access. 2020;8:167985–97.

    Article  Google Scholar 

  62. Barua S, Ng AWM, Perera BJC. Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. J Hydrol Eng. 2012;17:1408–13.

    Article  Google Scholar 

  63. Belayneh A, Adamowski J. Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod. J Water Land Dev. 2013;18:3–12.

    Article  Google Scholar 

  64. Barua S, Ng AWM, Perera BJC. Comparative evaluation of drought indexes: case study on the Yarra River Catchment in Australia. J Water Resour Plan Manag. 2011;137:215–26.

    Article  Google Scholar 

  65. Zhao Z, Chow TL, Rees HW, Yang Q, **ng Z, Meng F-R. Predict soil texture distributions using an artificial neural network model. Comput Electron Agric. 2009;65:36–48.

    Article  Google Scholar 

  66. Elshorbagy A, Parasuraman K. On the relevance of using artificial neural networks for estimating soil moisture content. J Hydrol. 2008;362:1–18.

    Article  Google Scholar 

  67. Levine ER, Kimes DS, Sigillito VG. Classifying soil structure using neural networks. Ecol Model. 1996;92:101–8.

    Article  Google Scholar 

  68. Dai X, Huo Z, Wang H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res. 2011;121:441–9.

    Article  Google Scholar 

  69. Chattopadhyay A, Nabizadeh E, Hassanzadeh P. Analog forecasting of extreme-causing weather patterns using deep learning. J Adv Model Earth Syst. 2020;12:e2019MS001958.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cohen J, Coumou D, Hwang J, Mackey L, Orenstein P, Totz S, et al. S2S reboot: an argument for greater inclusion of machine learning in subseasonal to seasonal forecasts. WIREs Clim Change. 2019;10:e00567.

    Article  Google Scholar 

  71. Wigley PB, Everitt PJ, van den Hengel A, Bastian JW, Sooriyabandara MA, McDonald GD, et al. Fast machine-learning online optimization of ultra-cold-atom experiments. Sci Rep. 2016;6:25890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kreutz M, Ait-Alla A, Varasteh K, Oelker S, Greulich A, Freitag M, et al. Machine learning-based icing prediction on wind turbines. Proc CIRP. 2019;81:423–8.

    Article  Google Scholar 

  73. PyTorch. AI for AG: production machine learning for agriculture. Medium. 2020. https://medium.com/pytorch/ai-for-ag-production-machine-learning-for-agriculture-e8cfdb9849a1. Accessed 26 Mar 2021.

  74. Pantazi XE, Tamouridou AA, Alexandridis TK, Lagopodi AL, Kashefi J, Moshou D. Evaluation of hierarchical self-organising maps for weed map** using UAS multispectral imagery. Comput Electron Agric. 2017;139:224–30.

    Article  Google Scholar 

  75. Pantazi X-E, Moshou D, Bravo C. Active learning system for weed species recognition based on hyperspectral sensing. Biosyst Eng. 2016;146:193–202.

    Article  Google Scholar 

  76. Binch A, Fox CW. Controlled comparison of machine vision algorithms for Rumex and Urtica detection in grassland. Comput Electron Agric. 2017;140:123–38.

    Article  Google Scholar 

  77. Pantazi XE, Moshou D, Tamouridou AA. Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput Electron Agric. 2019;156:96–104.

    Article  Google Scholar 

  78. Kale AP, Sonavane SP. IoT based smart farming: feature subset selection for optimized high-dimensional data using improved GA based approach for ELM. Comput Electron Agric. 2019;161:225–32.

    Article  Google Scholar 

  79. Espejo-Garcia B, Martinez-Guanter J, Pérez-Ruiz M, Lopez-Pellicer FJ, Javier Z-SF. Machine learning for automatic rule classification of agricultural regulations: a case study in Spain. Comput Electron Agric. 2018;150:343–52.

    Article  Google Scholar 

  80. Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: a survey. Comput Electron Agric. 2018;147:70–90.

    Article  Google Scholar 

  81. Su J, Liu C, Coombes M, Hu X, Wang C, Xu X, et al. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput Electron Agric. 2018;155:157–66.

    Article  Google Scholar 

  82. Grinblat GL, Uzal LC, Larese MG, Granitto PM. Deep learning for plant identification using vein morphological patterns. Comput Electron Agric. 2016;127:418–24.

    Article  Google Scholar 

  83. Pawara P, Okafor E, Surinta O, Schomaker L, Wiering M. Comparing local descriptors and bags of visual words to deep convolutional neural networks for plant recognition. In: Int Conf Pattern Recognit Appl Methods; 2017. p. 479–86.

    Google Scholar 

  84. Liu N, Kan J. Improved deep belief networks and multi-feature fusion for leaf identification. Neurocomputing. 2016;216:460–7.

    Article  Google Scholar 

  85. Wu SG, Bao FS, Xu EY, Wang Y, Chang Y, **ang Q. A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE Int Symp Signal Process Inf Technol; 2007. p. 11–6.

    Google Scholar 

  86. ** T, Hou X, Li P, Zhou F. A novel method of automatic plant species identification using sparse representation of leaf tooth features. PLoS One. 2015;10:e0139482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. **ao X-Y, Hu R, Zhang S-W, Wang X-F. HOG-based approach for leaf classification. In: Huang D-S, Zhang X, Reyes García CA, Zhang L, editors. Adv Intell Comput Theor Appl Asp Artif Intell. Berlin: Springer; 2010. p. 149–55.

    Google Scholar 

  88. Tryon RC. Communality of a variable: formulation by cluster analysis. Psychometrika. 1957;22:241–60.

    Article  Google Scholar 

  89. Lloyd S. Least squares quantization in PCM. IEEE Trans Inf Theory. 1982;28:129–37.

    Article  Google Scholar 

  90. Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967;32:241–54.

    Article  CAS  PubMed  Google Scholar 

  91. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol. 1977;39:1–22.

    Google Scholar 

  92. Rokach L, Maimon O. Data mining with decision trees: theory and applications. 2nd ed. Singapore: World Scientific; 2014. http://www.worldscientific.com/worldscibooks/10.1142/9097. Accessed 2 Apr 2021.

    Book  Google Scholar 

  93. Breiman L, Friedman JH, Olshen RA. Classification and regression trees. London: Routledge; 2017.

    Book  Google Scholar 

  94. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, et al. Top 10 algorithms in data mining. Knowl Inf Syst. 2008;14:1–37.

    Article  Google Scholar 

  95. Piryonesi SM, El-Diraby TE. Data analytics in asset management: cost-effective prediction of the pavement condition index. J Infrastruct Syst. 2020;26:04019036.

    Article  Google Scholar 

  96. Bennett KP, Blue JA. A support vector machine approach to decision trees. In: 1998 IEEE Int Jt Conf Neural Netw Proc IEEE World Congr Comput Intell Cat No 98CH36227; 1998. p. 2396–401.

    Google Scholar 

  97. Osei-Bryson K-M. Evaluation of decision trees: a multi-criteria approach. Comput Oper Res. 2004;31:1933–45.

    Article  Google Scholar 

  98. Belson WA. Matching and prediction on the principle of biological classification. J R Stat Soc: Ser C: Appl Stat. 1959;8:65–75.

    Google Scholar 

  99. Quinlan R. 4.5: Programs for machine learning. San Francisco, CA: Morgan Kaufmann Publishers Inc; 1993.

    Google Scholar 

  100. Kass GV. An exploratory technique for investigating large quantities of categorical data. J R Stat Soc: Ser C: Appl Stat. 1980;29:119–27.

    Google Scholar 

  101. Drury B, Valverde-Rebaza J, Moura M-F, de Andrade Lopes A. A survey of the applications of Bayesian networks in agriculture. Eng Appl Artif Intell. 2017;65:29–42.

    Article  Google Scholar 

  102. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. NeuroImage. 2009;46:1004–17.

    Article  PubMed  Google Scholar 

  103. Russell S, Norvig P. Artificial intelligence: a modern approach. Hoboken, NJ: Prentice Hall; 2002.

    Google Scholar 

  104. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. Amsterdam: Elsevier; 2014.

    Google Scholar 

  105. Duda RO, Hart PE, Stork DG. Pattern classification and scene analysis. New York, NY: Wiley; 1973.

    Google Scholar 

  106. Neapolitan RE. Models for reasoning under uncertainty. Appl Artif Intell. 1987;1:337–66.

    Article  Google Scholar 

  107. Aha DW, Kibler D, Albert MK. Instance-based learning algorithms. Mach Learn. 1991;6:37–66.

    Article  Google Scholar 

  108. Witten IH, Frank E, Hall MA, Pal CJ. Practical machine learning tools and techniques. Burlington, MA: Morgan Kaufmann; 2005. p. 578.

    Google Scholar 

  109. Fix E. Discriminatory analysis: nonparametric discrimination, consistency properties. Texas: USAF school of Aviation Medicine; 1985.

    Google Scholar 

  110. Atkeson CG, Moore AW, Schaal S. Locally weighted learning. Artif Intell Rev. 1997;11:11–73.

    Article  Google Scholar 

  111. Kohonen T. Learning vector quantization. In: Self-organ maps. New York, NY: Springer; 1995. p. 175–89.

    Chapter  Google Scholar 

  112. Cortes C, Vapnik V. Support vector machine. Mach Learn. 1995;20:273–97.

    Article  Google Scholar 

  113. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2:27.

    Article  Google Scholar 

  114. Moshou D, Pantazi X-E, Kateris D, Gravalos I. Water stress detection based on optical multisensor fusion with a least squares support vector machine classifier. Biosyst Eng. 2014;117:15–22.

    Article  Google Scholar 

  115. Smola AJ. Regression estimation with support vector learning machines. Master’s thesis, Technische Universität München; 1996.

    Google Scholar 

  116. Suykens JAK, Gestel TV, Brabanter JD. Least squares support vector machines. Singapore: World Scientific; 2002.

    Book  Google Scholar 

  117. Galvao RKH, Araujo MCU, Fragoso WD, Silva EC, Jose GE, Soares SFC, et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemom Intell Lab Syst. 2008;92:83–91.

    Article  CAS  Google Scholar 

  118. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33.

    Article  Google Scholar 

  119. Sharma S. Artificial Neural Network (ANN) in machine learning. Posted on August 8, 2017 at 7:00pm, Blog V. https://www.datasciencecentral.com/profiles/blogs/artificial-neural-network-ann-in-machine-learning. Accessed 20 Mar 2021.

  120. Broomhead DS, Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988;2:321.

    Google Scholar 

  121. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386.

    Article  CAS  PubMed  Google Scholar 

  122. Linnainmaa S. Taylor expansion of the accumulated rounding error. BIT Numer Math. 1976;16:146–60.

    Article  Google Scholar 

  123. Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE Int Conf Neural Netw. Washington, DC: IEEE; 1993. p. 586–91.

    Chapter  Google Scholar 

  124. Hecht-Nielsen R. Counterpropagation networks. Appl Opt. 1987;26:4979–84.

    Article  CAS  PubMed  Google Scholar 

  125. Jang J-S. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern. 1993;23:665–85.

    Article  Google Scholar 

  126. Melssen W, Wehrens R, Buydens L. Supervised Kohonen networks for classification problems. Chemom Intell Lab Syst. 2006;83:99–113.

    Article  CAS  Google Scholar 

  127. Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci. 1982;79:2554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pal SK, Mitra S. Multilayer perceptron, fuzzy sets, classification. Washington, DC: IEEE; 1992.

    Book  Google Scholar 

  129. Kohonen T. The self-organizing map. Proc IEEE. 1990;78:1464–80.

    Article  Google Scholar 

  130. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: theory and applications. Neurocomputing. 2006;70:489–501.

    Article  Google Scholar 

  131. Specht DF. A general regression neural network. IEEE Trans Neural Netw. 1991;2:568–76.

    Article  CAS  PubMed  Google Scholar 

  132. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  133. Goodfellow I, Bengio Y, Courville A. Machine learning basics. Deep Learn. 2016;1:98–164.

    Google Scholar 

  134. Salakhutdinov R, Hinton G. Deep Boltzmann machines. J Mach Learn Res. 2009;5:448–55.

    Google Scholar 

  135. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11:3371.

    Google Scholar 

  136. Liu B, Wang S, Long R, Chou K-C. iRSpot-EL: identify recombination spots with an ensemble learning approach. Bioinformatics. 2017;33:35–41.

    Article  CAS  PubMed  Google Scholar 

  137. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  138. Schapire RE. A brief introduction to boosting. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence; 1999. p. 1401–6.

    Google Scholar 

  139. Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: ICML’96: Proceedings of the Thirteenth International Conference on International Conference on Machine Learning; 1996. p. 148–56.

    Google Scholar 

  140. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40.

    Article  Google Scholar 

  141. Tiwari D, Dinar A. Role and use of economic incentives in irrigated agriculture. In: World Bank technical papers. Washington, DC: World Bank; 2002. p. 103–22.

    Google Scholar 

  142. Lytos A, Lagkas T, Sarigiannidis P, Zervakis M, Livanos G. Towards smart farming: systems, frameworks and exploitation of multiple sources. Comput Netw. 2020;172:107147.

    Article  Google Scholar 

  143. Chattopadhyay N, Hulme M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol. 1997;87:55–73.

    Article  Google Scholar 

  144. Roudier P, Sultan B, Quirion P, Berg A. The impact of future climate change on West African crop yields: what does the recent literature say? Glob Environ Chang. 2011;21:1073–83.

    Article  Google Scholar 

  145. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Chang. 2014;14:563–78.

    Article  Google Scholar 

  146. Belder P, Spiertz JHJ, Bouman BAM, Lu G, Tuong TP. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crop Res. 2005;93:169–85.

    Article  Google Scholar 

  147. Ewert F, Rounsevell MDA, Reginster I, Metzger MJ, Leemans R. Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agric Ecosyst Environ. 2005;107:101–16.

    Article  Google Scholar 

  148. Reardon T, Taylor JE, Stamoulis K, Lanjouw P, Balisacan A. Effects of non-farm employment on rural income inequality in develo** countries: an investment perspective. J Agric Econ. 2000;51:266–88.

    Article  Google Scholar 

  149. Mosley P, Suleiman A. Aid, agriculture and poverty in develo** countries. Rev Dev Econ. 2007;11:139–58.

    Article  Google Scholar 

  150. DeWalt BR. Using indigenous knowledge to improve agriculture and natural resource management. Hum Organ. 1994;53:123–31.

    Article  Google Scholar 

  151. Vanclay F. Social principles for agricultural extension to assist in the promotion of natural resource management. Aust J Exp Agric. 2004;44:213–22.

    Article  Google Scholar 

  152. Garner SR, Cunningham SJ, Holmes G, Nevill-Manning CG, Witten IH. Applying a machine learning workbench: experience with agricultural databases. In: Proc Mach Learn Pract Workshop Mach Learn Conf Tahoe City CA USA; 1995. p. 14–21.

    Google Scholar 

  153. Dimitriadis S, Goumopoulos C. Applying machine learning to extract new knowledge in precision agriculture applications. In: 2008 Panhellenic Conf Inform. Washington, DC: IEEE; 2008. p. 100–4.

    Chapter  Google Scholar 

  154. Mekonnen Y, Namuduri S, Burton L, Sarwat A, Bhansali S. Machine learning techniques in wireless sensor network based precision agriculture. J Electrochem Soc. 2019;167:037522.

    Article  Google Scholar 

  155. Sambasivam G, Opiyo GD. A predictive machine learning application in agriculture: cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt Inform J. 2020;22:27.

    Article  Google Scholar 

  156. Peerlinck A, Sheppard J, Maxwell B. Using deep learning in yield and protein prediction of winter wheat based on fertilization prescriptions in precision agriculture. In: Int Conf Precis Agric ICPA; 2018.

    Google Scholar 

  157. Ramos PJ, Prieto FA, Montoya EC, Oliveros CE. Automatic fruit count on coffee branches using computer vision. Comput Electron Agric. 2017;137:9–22.

    Article  Google Scholar 

  158. Amatya S, Karkee M, Gongal A, Zhang Q, Whiting MD. Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosyst Eng. 2016;146:3–15.

    Article  Google Scholar 

  159. Ali I, Cawkwell F, Dwyer E, Green S. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—a machine learning approach. IEEE J Sel Top Appl Earth Obs Remote Sens. 2016;10:3254–64.

    Article  Google Scholar 

  160. Pantazi XE, Moshou D, Alexandridis T, Whetton RL, Mouazen AM. Wheat yield prediction using machine learning and advanced sensing techniques. Comput Electron Agric. 2016;121:57–65.

    Article  Google Scholar 

  161. Senthilnath J, Dokania A, Kandukuri M, Ramesh KN, Anand G, Omkar SN. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosyst Eng. 2016;146:16–32.

    Article  Google Scholar 

  162. Su Y, Xu H, Yan L. Support vector machine-based open crop model (SBOCM): case of rice production in China. Saudi J Biol Sci. 2017;24:537–47.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kung H-Y, Kuo T-H, Chen C-H, Tsai P-Y. Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability. 2016;8:735.

    Article  Google Scholar 

  164. Muller D, Zeller M. Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation. Agric Econ. 2002;27:333–54.

    Article  Google Scholar 

  165. Fieuzal R, Duchemin B, Jarlan L, Zribi M, Baup F, Merlin O, et al. Combined use of optical and radar satellite data for the monitoring of irrigation and soil moisture of wheat crops. Hydrol Earth Syst Sci. 2011;15:1117–29.

    Article  Google Scholar 

  166. Rembold F, Atzberger C, Savin I, Rojas O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013;5:1704–33.

    Article  Google Scholar 

  167. Pérez-García A, Romero D, De Vicente A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol. 2011;22:187–93.

    Article  CAS  PubMed  Google Scholar 

  168. Pande S, Bandyopadhyay R, Blümmel M, Rao JN, Thomas D, Navi SS. Disease management factors influencing yield and quality of sorghum and groundnut crop residues. Field Crop Res. 2003;84:89–103.

    Article  Google Scholar 

  169. Venuprasad R, Dalid CO, Valle MD, Zhao D, Espiritu M, Cruz MTS, et al. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet. 2009;120:177–90.

    Article  PubMed  Google Scholar 

  170. Patil SS, Thorat SA. Early detection of grapes diseases using machine learning and IoT. In: 2016 Second Int Conf Cogn Comput Inf Process CCIP. Washington, DC: IEEE; 2016. p. 1–5.

    Google Scholar 

  171. Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artif Intell Agric. 2019;2:1–12.

    Google Scholar 

  172. Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Comput Electron Agric. 2018;145:311–8.

    Article  Google Scholar 

  173. Pantazi XE, Tamouridou AA, Alexandridis TK, Lagopodi AL, Kontouris G, Moshou D. Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Comput Electron Agric. 2017;137:130–7.

    Article  Google Scholar 

  174. Ebrahimi MA, Khoshtaghaza M-H, Minaei S, Jamshidi B. Vision-based pest detection based on SVM classification method. Comput Electron Agric. 2017;137:52–8.

    Article  Google Scholar 

  175. Chung C-L, Huang K-J, Chen S-Y, Lai M-H, Chen Y-C, Kuo Y-F. Detecting Bakanae disease in rice seedlings by machine vision. Comput Electron Agric. 2016;121:404–11.

    Article  Google Scholar 

  176. Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W. Biofortification of staple food crops. J Nutr. 2006;136:1064–7.

    Article  CAS  PubMed  Google Scholar 

  177. Andersson MS, Saltzman A, Virk PS, Pfeiffer WH. Progress update: crop development of biofortified staple food crops under HarvestPlus. Afr J Food Agric Nutr Dev. 2017;17:11905–35.

    CAS  Google Scholar 

  178. Figueroa M, Hammond-Kosack KE, Solomon PS. A review of wheat diseases—a field perspective. Mol Plant Pathol. 2018;19:1523–36.

    Article  PubMed  Google Scholar 

  179. Pantazi XE, Moshou D, Oberti R, West J, Mouazen AM, Bochtis D. Detection of biotic and abiotic stresses in crops by using hierarchical self organizing classifiers. Precis Agric. 2017;18:383–93.

    Article  Google Scholar 

  180. Moshou D, Bravo C, Oberti R, West J, Bodria L, McCartney A, et al. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real Time Imag. 2005;11:75–83.

    Article  Google Scholar 

  181. Moshou D, Bravo C, Wahlen S, West J, McCartney A, De Baerdemaeker J, et al. Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps. Precis Agric. 2006;7:149–64.

    Article  Google Scholar 

  182. Kocira A, Staniak M. Weed ecology and new approaches for management. Agriculture. 2021;11:262.

    Article  Google Scholar 

  183. Kumar V, Singh S, Chhokar RS, Malik RK, Brainard DC, Ladha JK. Weed management strategies to reduce herbicide use in zero-till rice–wheat crop** systems of the Indo-Gangetic Plains. Weed Technol. 2013;27:241–54.

    Article  Google Scholar 

  184. Shaner DL, Beckie HJ. The future for weed control and technology. Pest Manag Sci. 2014;70:1329–39.

    Article  CAS  PubMed  Google Scholar 

  185. Abouziena HF, Haggag WM. Weed control in clean agriculture: a review1. Planta Daninha. 2016;34:377–92.

    Article  Google Scholar 

  186. Barrett SH. Crop mimicry in weeds. Econ Bot. 1983;37:255–82.

    Article  Google Scholar 

  187. Wäldchen J, Rzanny M, Seeland M, Mäder P. Automated plant species identification—trends and future directions. PLoS Comput Biol. 2018;14:e1005993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Slaughter DC, Giles DK, Downey D. Autonomous robotic weed control systems: a review. Comput Electron Agric. 2008;61:63–78.

    Article  Google Scholar 

  189. Westwood JH, Charudattan R, Duke SO, Fennimore SA, Marrone P, Slaughter DC, et al. Weed management in 2050: perspectives on the future of weed science. Weed Sci. 2018;66:275–85.

    Article  Google Scholar 

  190. Zhang M, Li C, Yang F. Classification of foreign matter embedded inside cotton lint using short wave infrared (SWIR) hyperspectral transmittance imaging. Comput Electron Agric. 2017;139:75–90.

    Article  Google Scholar 

  191. Maione C, Batista BL, Campiglia AD, Barbosa F Jr, Barbosa RM. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Comput Electron Agric. 2016;121:101–7.

    Article  Google Scholar 

  192. Zhu L, Sun J, Wu G, Wang Y, Zhang H, Wang L, et al. Identification of rice varieties and determination of their geographical origin in China using Raman spectroscopy. J Cereal Sci. 2018;82:175–82.

    Article  Google Scholar 

  193. Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CS, et al. Remote sensing for crop management. Photogramm Eng Remote Sens. 2003;69:647–64.

    Article  Google Scholar 

  194. Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines HC, Nagarajan R, et al. Site-specific nutrient management for intensive rice crop** systems in Asia. Field Crop Res. 2002;74:37–66.

    Article  Google Scholar 

  195. Singh Y, Sidhu HS. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proc Indian Natl Sci Acad. 2014;80:95–114.

    Article  CAS  Google Scholar 

  196. Fernald A, Tidwell V, Rivera J, Rodríguez S, Guldan S, Steele C, et al. Modeling sustainability of water, environment, livelihood, and culture in traditional irrigation communities and their linked watersheds. Sustainability. 2012;4:2998–3022.

    Article  Google Scholar 

  197. Kang S, Hao X, Du T, Tong L, Su X, Lu H, et al. Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice. Agric Water Manag. 2017;179:5–17.

    Article  Google Scholar 

  198. Katul G, Novick K. Evapotranspiration. In: Likens GE, editor. The encyclopedia of inland waters. Oxford: Academic Press; 2009. p. 661–7. https://www.sciencedirect.com/science/article/pii/B9780123706263000120.

    Chapter  Google Scholar 

  199. Mehdizadeh S, Behmanesh J, Khalili K. Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Comput Electron Agric. 2017;139:103–14.

    Article  Google Scholar 

  200. Feng Y, Peng Y, Cui N, Gong D, Zhang K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput Electron Agric. 2017;136:71–8.

    Article  Google Scholar 

  201. Patil AP, Deka PC. An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs. Comput Electron Agric. 2016;121:385–92.

    Article  Google Scholar 

  202. Mohammadi K, Shamshirband S, Motamedi S, Petković D, Hashim R, Gocic M. Extreme learning machine based prediction of daily dew point temperature. Comput Electron Agric. 2015;117:214–25.

    Article  Google Scholar 

  203. Uphoff N. Higher yields with fewer external inputs? The system of rice intensification and potential contributions to agricultural sustainability. Int J Agric Sustain. 2003;1:38–50.

    Article  Google Scholar 

  204. Morris ML. Fertilizer use in African agriculture: lessons learned and good practice guidelines. Washington, DC: World Bank Publications; 2007.

    Book  Google Scholar 

  205. Khush GS. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol. 1997;35:25–34.

    Article  CAS  PubMed  Google Scholar 

  206. Cassman KG. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci. 1999;96:5952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Naher UA, Ahmed MN, Sarkar MIU, Biswas JC, Panhwar QA. Chapter 8 - Fertilizer management strategies for sustainable rice production. In: Chandran S, Unni MR, Thomas S, editors. Organic farming. Sawston: Woodhead Publishing; 2019. p. 251–67. https://www.sciencedirect.com/science/article/pii/B9780128132722000094.

    Chapter  Google Scholar 

  208. Sharma R, Kamble SS, Gunasekaran A, Kumar V, Kumar A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput Oper Res. 2020;119:104926.

    Article  Google Scholar 

  209. Ved M. Machine learning in agriculture: applications and techniques. Posted on July 10 2019 at 8:30am, Blog V. https://www.datasciencecentral.com/profiles/blogs/machine-learning-in-agriculture-applications-and-techniques. Accessed 22 Mar 2021.

  210. Morgado RG, Loureiro S, González-Alcaraz MN. Chapter 3 - Changes in soil ecosystem structure and functions due to soil contamination. In: Duarte AC, Cachada A, Rocha-Santos T, editors. Soil pollution. New York, NY: Academic Press; 2018. p. 59–87. https://www.sciencedirect.com/science/article/pii/B9780128498736000030.

    Chapter  Google Scholar 

  211. Phillips CL, Nickerson N. Soil respiration. In: Reference module in earth systems and environmental sciences. Amsterdam: Elsevier; 2015. https://www.sciencedirect.com/science/article/pii/B9780124095489094422.

    Google Scholar 

  212. Zhao Y, Tang J, Graham C, Zhu Q, Takagi K, Lin H. Chapter 12 - Hydropedology in the ridge and valley: soil moisture patterns and preferential flow dynamics in two contrasting landscapes. In: Lin H, editor. Hydropedology. Boston, MA: Academic Press; 2012. p. 381–411. https://www.sciencedirect.com/science/article/pii/B9780123869418000125.

    Chapter  Google Scholar 

  213. Feng Y, Cui N, Hao W, Gao L, Gong D. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma. 2019;338:67–77.

    Article  Google Scholar 

  214. Coopersmith EJ, Minsker BS, Wenzel CE, Gilmore BJ. Machine learning assessments of soil drying for agricultural planning. Comput Electron Agric. 2014;104:93–104.

    Article  Google Scholar 

  215. Morellos A, Pantazi X-E, Moshou D, Alexandridis T, Whetton R, Tziotzios G, et al. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst Eng. 2016;152:104–16.

    Article  Google Scholar 

  216. Nahvi B, Habibi J, Mohammadi K, Shamshirband S, Al Razgan OS. Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Comput Electron Agric. 2016;124:150–60.

    Article  Google Scholar 

  217. Johann AL, de Araújo AG, Delalibera HC, Hirakawa AR. Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener. Comput Electron Agric. 2016;121:420–8.

    Article  Google Scholar 

  218. Hufkens K, Melaas EK, Mann ML, Foster T, Ceballos F, Robles M, et al. Monitoring crop phenology using a smartphone based near-surface remote sensing approach. Agric For Meteorol. 2019;265:327–37.

    Article  Google Scholar 

  219. Jiao X, Kovacs JM, Shang J, McNairn H, Walters D, Ma B, et al. Object-oriented crop map** and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J Photogramm Remote Sens. 2014;96:38–46.

    Article  Google Scholar 

  220. Zhao W, Qu Y, Chen J, Yuan Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens Environ. 2020;247:111952.

    Article  Google Scholar 

  221. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. A crop phenology detection method using time-series MODIS data. Remote Sens Environ. 2005;96:366–74.

    Article  Google Scholar 

  222. Lopez-Sanchez JM, Cloude SR, Ballester-Berman JD. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans Geosci Remote Sens. 2011;50:2695–709.

    Article  Google Scholar 

  223. Lopez-Sanchez JM, Vicente-Guijalba F, Ballester-Berman JD, Cloude SR. Polarimetric response of rice fields at C-band: analysis and phenology retrieval. IEEE Trans Geosci Remote Sens. 2013;52:2977–93.

    Article  Google Scholar 

  224. Vicente-Guijalba F, Martinez-Marin T, Lopez-Sanchez JM. Crop phenology estimation using a multitemporal model and a Kalman filtering strategy. IEEE Geosci Remote Sens Lett. 2013;11:1081–5.

    Article  Google Scholar 

  225. Lausch A, Salbach C, Schmidt A, Doktor D, Merbach I, Pause M. Deriving phenology of barley with imaging hyperspectral remote sensing. Ecol Model. 2015;295:123–35.

    Article  Google Scholar 

  226. Xu D, Fu M. Detection and modeling of vegetation phenology spatiotemporal characteristics in the middle part of the Huai river region in China. Sustainability. 2015;7:2841–57.

    Article  Google Scholar 

  227. Le Toan T, Laur H, Mougin E, Lopes A. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Trans Geosci Remote Sens. 1989;27:709–18.

    Article  Google Scholar 

  228. Inoue Y, Sakaiya E. Relationship between X-band backscattering coefficients from high-resolution satellite SAR and biophysical variables in paddy rice. Rem Sens Lett. 2013;4:288–95.

    Article  Google Scholar 

  229. Inoue Y, Sakaiya E, Wang C. Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sens Environ. 2014;140:257–66.

    Article  Google Scholar 

  230. Rossi C, Erten E. Paddy-rice monitoring using TanDEM-X. IEEE Trans Geosci Remote Sens. 2014;53:900–10.

    Article  Google Scholar 

  231. Erten E, Rossi C, Yüzügüllü O. Polarization impact in TanDEM-X data over vertical-oriented vegetation: the paddy-rice case study. IEEE Geosci Remote Sens Lett. 2015;12:1501–5.

    Article  Google Scholar 

  232. Milton EJ. Review of Mather, PM, 1999: computer processing of remotely-sensed images. An introduction. Chichester: Wiley. Prog Phys Geogr. 2001;25:145–6.

    Article  Google Scholar 

  233. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

    Article  Google Scholar 

  234. De Bernardis CG, Vicente-Guijalba F, Martinez-Marin T, Lopez-Sanchez JM. Estimation of key dates and stages in rice crops using dual-polarization SAR time series and a particle filtering approach. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;8:1008–18.

    Article  Google Scholar 

  235. Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H. State-of-the-art in artificial neural network applications: a survey. Heliyon. 2018;4:e00938.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

None.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donde, R. et al. (2021). Artificial Intelligence and Machine Learning in Rice Research. In: Gupta, M.K., Behera, L. (eds) Applications of Bioinformatics in Rice Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-3997-5_12

Download citation

Publish with us

Policies and ethics

Navigation