Biopesticides: An Alternative to Synthetic Insecticides

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

The modern agriculture is negatively affected due to the rapid exploitation of natural resources, indiscriminate use of pesticide application, and frequent weather events influenced by climate change. Biocontrol action is a significant tool for IPM, offers alternative management techniques that are safer for human and environmental health. It is also worth noting that biological control has worked in a versatile manner in different agricultural management systems and with different types of disease causing organisms existing in the nature. Several key pests and invasive pests were successfully controlled with the application of biological agents. Although biopesticides very slowly replace the use of pesticide that may be due to biopesticide exploration and application range. In India the main challenge for biopesticide is related to their shelf life, narrow host range for pathogens, variation in the lab to land performances, economic regulation, etc. Integrated approach will be beneficial for biopesticide application for this private and government sectors that come together with farmers to the village level and to build confidence in the use of biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamczyk LC, Hardee DD (2001) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Ansari MS, Ahmad N, Hasan F (2012) Potential of biopesticides in sustainable agriculture. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, Dordrecht, pp 529–595. https://doi.org/10.1007/978-94-007-1591-2_17

    Chapter  Google Scholar 

  • Arora R, Shera PS (2014) Genetic improvement of biocontrol agents for sustainable pest management. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 255–285. https://doi.org/10.1007/978-81-322-1877-7

    Chapter  Google Scholar 

  • Arthurs S, McKenzie CL, Chen J, Dogramaci M, Brennan M, Houben, K. And Osborne, L. (2009) Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol Control 49:91–96

    Article  Google Scholar 

  • Bhattacharya AK, Mondal P, Ramamurthy VV, Srivastava RP (2003) Beauveriabassiana: a potential bioagent for innovative integrated pest management programme. In: Srivastava RP (ed) Biopesticides and bioagents in integrated pest management of agricultural crops. International Book Distributing Co., Lucknow, pp 381–492

    Google Scholar 

  • Bouhous M, Larous L (2012) Efficiency of the entomopathogenic fungus Verticillium lecanii in the biological control of Trialeurodes vaporariorum, (Homoptera: Aleyrodidae), a greenhouse culture pest. Afr J Microbiol Res 6(10):2435–2442

    Google Scholar 

  • Bowers WS (1991) Insect hormones and antihormones in plants. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic, New York, pp 431–456

    Chapter  Google Scholar 

  • Bowers WS, Nishida R (1980) Juvocimenes; potent juvenile hormone mimics from sweet basil. Science 209:1030–1032

    Article  CAS  PubMed  Google Scholar 

  • Bowers WS, Ohta T, Cleere JS, Marsella PA (1976) Discovery of insect anti-juvenile hormones in plants. Science 193:542–547

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari G (2004) Neem—an omnipotent plant: a retrospection. Chembiochem 5(4):408–421. https://doi.org/10.1002/cbic.200300749

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill S, Soberón M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicology 49:423–435

    CAS  Google Scholar 

  • Casida JF, Quistad GB (1995) Metabolism and synergism of pyrethrins. In: Casida JE, Quistad GB (eds) Pyrethrum flowers: production, chemistry, toxicology, and uses. Oxford University Press, New York, pp 259–276

    Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B Biol Sci 366(1573):1987–1998

    Article  Google Scholar 

  • Chattopadhyay A, Bhatnagar N, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay P, Banerjee G, Mukherjee S (2017) Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech 7(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen X, Chen Y, Wei H, Lin S, Tian H et al (2018) Preparation, characterisation, and controlled release of sex pheromone-loaded MPEG-PCL diblock copolymer micelles for Spodoptera litura (Lepidoptera: Noctuidae). PLoS One 13(9):e0203062. https://doi.org/10.1371/journal.pone.0203062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CIBRC (2017) CIBRC, 2017. Central Insecticides Board and Registration Committee. Ministry of Agriculture and Farmers Welfare, Government of India. http://cibrc.nic.in. Accessed 25 June 2017

  • Clemson HG (2007) Organic pesticides and biopesticides, Clemson extension, home and garden information center. Clemson University, Clemson

    Google Scholar 

  • Coombs JJ, Douches DS, Li WB, Grafius EJE, Pett WL (2002) Combining engineered (Bt-cry3A) and natural resistance mechanisms in potato for control of Colorado potato beetle. J Am Soc Hortic Sci 127:62–68

    Article  CAS  Google Scholar 

  • Cork A, Alam SN, Das A, Das CS, Ghosh GC, Farman DI, Hall DR, Maslen NR, Vedham K, Phythian SJ, Rouf FMA, Srinivasan K (2001) Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis blend optimization. J Chem Ecol 27(9):1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Cornu D, Leplé JC. Bonadé-Bottino M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of proteinase inhibitor and a Bacillus thuringiensis delta–endotoxin in transgenic poplars.. In: Proceedings IUFRO meeting on somatic cell genetics and molecular genetic of trees. Kluwer, Dordrecht, pp 131–136, 287p

    Google Scholar 

  • Cunningham RT (1989) Male annihilation. In: Robinson AS, Hooper G (eds) World crop pests. Elsevier, Amsterdam, pp 78–81

    Google Scholar 

  • Da-Costa CP, Jones CM (1971) Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172(3988):1145–1146

    Article  CAS  PubMed  Google Scholar 

  • Dai P, Ruan CC, Zang LS, Wan FH, Liu LZ (2014) Effects of rearing host species on the host-feeding capacity and parasitism of the whitefly parasitoid Encarsia formosa. J Insect Sci 14:118. https://doi.org/10.1093/jis/14.1.118.Article118

    Article  PubMed  PubMed Central  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res. Public Health 8:1402–1419. https://doi.org/10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBach P, Rosen D (1991) Biological control by natural enemies. CUP archive, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • De-Vos M, Cheng WY, Summers HE, Raguso RA, Jander G (2010) Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. PNAS 107(33):14673–14678. https://doi.org/10.1073/pnas.1001539107

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickens JC, Oliver JE, Hollister B, Davis JC, Klun JA (2002) Breaking a paradigm: male-produced aggregation pheromone for the Colorado potato beetle. J Exp Biol 205:1925–1933

    Article  PubMed  Google Scholar 

  • Elmoghazy MME, El-Saiedy EMA, Romeih AHM (2012) Integrated control of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) on Faba bean Vicia faba (L.) in an open field at Behaira gGovernorate, Egypt. Int J Environ Sci Eng 2:93–100

    Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835. https://doi.org/10.1603/029.102.0301

    Article  CAS  PubMed  Google Scholar 

  • Erler F, Ates AO (2015) Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J Insect Sci 15(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Floris I, Satta A, Cabras P, Garau VL, Angioni A (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. J Econ Entomol 97(2):187–191

    Article  CAS  PubMed  Google Scholar 

  • Foster SP, Roelofs WL (1988) Pink bollworm sex pheromone biosynthesis from oleic acid. Insect Biochem 18(3):281–286

    Article  CAS  Google Scholar 

  • Gill HK, Garg H (2014) Pesticide: environmental impacts and management strategies. Pestic Toxic Asp 8:187. https://doi.org/10.5772/57399

    Article  Google Scholar 

  • Goldansaz SH, Dewhirst S, Birkett MA, Hooper AM, Smiley DWM, Pickett JA, Wadhams L, McNeil JN (2004) Identification of two sex pheromone components of the potato aphid, Macrosiphum euphorbiae (Thomas). J Chem Ecol 30:819–834

    Article  CAS  PubMed  Google Scholar 

  • Grafton-Cardwell EE, Leea JE, Stewartb JR, Olsenc KD (2006) Role of two insect growth regulators in integrated pest management of citrus scales. J Econ Entomol 99(3):733–744

    Article  CAS  PubMed  Google Scholar 

  • Guo JY, Wu G, Wan FH (2013) Effects of high-gossypol cotton on the development and reproduction of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species. J Econ Entomol 106(3):1379–1385. https://doi.org/10.1603/ec12401

    Article  PubMed  Google Scholar 

  • Hamilton DW, Schwartz PH, Townshend BG, Jester CW (1971) Traps reduce an isolated infestation of Japanese beetle. J Econ Entomol 64:150

    Article  Google Scholar 

  • Hoque FM, Islam MW, Khalequzzaman M (2010) Functional Eesponse of Phytoseiulus persimilis Athias-Henriot to Tetranychus urticae Koch: effects of prey life stages and temperature. Univ J Zool Rajshahi Univ 29:1–8

    Article  Google Scholar 

  • Ishaaya I, Birk Y, Bondi A, Tencer Y (1969) Soybean saponins IX. Studies of their effect on birds, mammals and coldblooded organisms. J Sci Food Agric 20:433–436

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (1997) Neem and other botanical insecticides: barriers to commercialization. Phytoparasitica 25(4):339. https://doi.org/10.1007/BF02981099

    Article  Google Scholar 

  • Jansen SV, Dickburt A, Buysse C, Piens L, Saey C, De Wulf B, Gossele A, Paez VA, Gobel E (1997) Transgenic corn expressing a cry9C insecticidal protein from Bacillus thuringiensis protected from European corn borer damage. Crop Sci 37:1616–1624

    Article  Google Scholar 

  • Joshi S, Viraktamath CA (2004) The sugarcane woolly aphid, Ceratovacuna lanigera. Curr Sci 87(3):307–316

    Google Scholar 

  • Kauffman WC, Meyerdirk DE, Miller D, Schauff M, Hernandez HG, Villanueva Jimenez JA (2001) Papaya mealy bug biological control in Puerto Rico and Dominican Republic. Presented 11 December 2001 at the ESA annual meeting, San Diego

    Google Scholar 

  • Khrimian A, Jang EB, Nagata J, Carvalho L (2006) Consumption and metabolism of 1,2 dimethoxy-4-(3-fluoro-2-propenyl)benzene, a fluorine analog of methyl eugenol, in the oriental fruit fly, Bactrocera dorsalis (Hendel). J Chem Ecol 32:1513–1526

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2008) Evaluation of Lecanicillium longisporum, Vertalec® for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers. Biol Control 45:404–409

    Article  Google Scholar 

  • Klein MG, Tumlinson JH, Ladd TL Jr, Doolittle RE (1981) Japanese beetle (Coleoptera: Scarabaeidae):response to synthetic sex attractant plus phenethyl propionate Eugenol. J Chem Ecol 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    Article  CAS  PubMed  Google Scholar 

  • Kranthi KR, Jadhav DR, Kranthi S, Wanjari RR, Ali SS, Russell DA (2002) Insecticide resistance in five major insect pests of cotton in India. Crop Prot 21:449–460

    Article  CAS  Google Scholar 

  • Kunert G, Reinhold C, Gershenzon J (2010) Constitutive emission of the aphid alarm pheromone, (E)-b-farnesene, from plants does not serve as a direct defense against aphids. BMC Ecol 10:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leng P, Zhang Z, Pan G, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10(86):19864–19873

    CAS  Google Scholar 

  • Lengai GMW, Muthomi JW (2018) Biopesticides and their role in sustainable agricultural production. J Biosci Med 6:7–41. https://doi.org/10.4236/jbm.2018.66002

    Article  CAS  Google Scholar 

  • Lewis LC (2002) Protozoan control of pests. In: Pimental D (ed) Encyclopedia of pest management. Taylor & Francis, New York, pp 673–676

    Google Scholar 

  • Lopez O, Fernandez-Bolanos JG, Gil MV (2005) New trends in pest control: the search for greener insecticides. Green Chem 7:431–442

    Article  CAS  Google Scholar 

  • Mandaokar AD, Goyalb RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma RP, Altosaar I, Kumar PA (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hu¨bner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • Mandula B (2008) Personal communication. US EPA Office of Pesticide Programs, Biopesticide and Pollution Prevention Division, Washington DC

    Google Scholar 

  • Mayne WW (1953) Cryptolaemus montrouzieri Mulsant in South India. Nature 172:85

    Article  CAS  PubMed  Google Scholar 

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1:169–178

    Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology 13:362–365

    CAS  PubMed  Google Scholar 

  • Meyerdirk DE, Kauffman WC (2001) Status on the development of a biological control program for Paracoccus marginatus Williams, papaya mealybug. Internal USDA, APHIS, PPQ Report

    Google Scholar 

  • Miller DR, Williams DJ, Hamon AB (1999) Notes on a new mealybug (Hemiptera: Coccoidea: Pseudococcidae) pest in Florida and the Caribbean: the papaya mealybug, Paracoccus marginatus Williams and Granara de Willink. Insecta Mundi 13:3–4

    Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Chapter  Google Scholar 

  • Mishra J, Dutta V, Arora NK (2020) Biopesticides in India: technology and sustainability linkages. 3 Biotech 10:1–2

    Article  CAS  Google Scholar 

  • Mohammad Beigi A, Port G (2015) Effect of infection by Beauveria bassiana and Metarhizium anisopliae on the feeding of Uvarovistia zebra. J Insect Sci 15(1):88

    Article  CAS  Google Scholar 

  • Mohan M, Sushil SN, Selvakumar G, Bhatt JC, Gujar G, Gupta HS (2009) Differential toxicity of bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Pest Manag Sci 65(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Ripoll R, Gabarra R, Symondson WOC, King RA, Agustí N (2012) Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach. Bull Entomol Res 102:415–423. https://doi.org/10.1017/S0007485311000836

    Article  CAS  PubMed  Google Scholar 

  • Nithya PR, Rani R (2019) Enriched bioformulations of Lecanicillium lecanii (Zimmermann) Zare and Gams against sucking pests of yard long bean, Vigna ungiculata L. Walp sesquipedalis. J Entomol Research 43(4):445

    Article  CAS  Google Scholar 

  • Noyes JS, Hayat M (1994) Oriental mealybug parasitoids of the Anagyrini (Hymenoptera: Encyrtidae). CAB International/The Natural History Museum, London, 554p

    Google Scholar 

  • Noyes JS, Schauff ME (2003) New encyrtidae (Hymenoptera) from papaya mealybug (Paracoccus marginatus Williams and Granara de Willink) (Hemiptera: Sternorrhyncha: Pseudococcidae). Proc Entomol Soc Wash 105:180–185

    Google Scholar 

  • Parrott WL (1990) Plant resistance to insects in cotton. Florida Entomol 73(3):392–396. https://doi.org/10.2307/3495457

    Article  Google Scholar 

  • Patil AS, Shinde VD, Magar SB, Yadav RG, Nerkar YS (2004) Sugarcane woolly aphid (Ceratovacuna lanigera Zehnt) its history and control measures. Coop Sug 36(1):37–48

    Google Scholar 

  • Pawar AD, Singh B (1993) Prospects of botanicals and biopesticides. In: Parmar BS, Devakumar C (eds) Botanicals and biopesticides. SPS Publishing no.4, Society of Pesticides Science, India and Westville Publishing House, New Delhi, pp 188–196

    Google Scholar 

  • Pawlak K, Kołodziejczak M (2020) The role of agriculture in ensuring food security in develo** countries: considerations in the context of the problem of sustainable food production. Sustainability 12(13):5488. https://doi.org/10.3390/su12135488

    Article  Google Scholar 

  • Pekrul S, Grula EA (1979) Mode of infection of the corn earworm (Heliothiszea) by Beauveriabassiana as revealed by scanning electron microscopy. J Invertebr Pathol 34:238–247

    Article  CAS  Google Scholar 

  • Pesticides Safety Directorate (2008) Assessment of the impact on crop protection in the UK of the ‘cut-off criteria’ and substitution provisions in the proposed regulation of the European Parliament and of the Council concerning the placing of plant protection products in the market. Pesticides Safety Directorate, York, p 46

    Google Scholar 

  • Plata-Rueda A, Martínez LC, Santos MHD, Fernandes FL, Wilcken CF, Soares MA, Zanuncio JC (2017) Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci Rep 7:46406. https://doi.org/10.1038/srep46406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan N (1993) Baculovirus pesticides. In: de Parmar BS, Devakumar C (eds) Botanicals and biopesticis. SPS Publishing no.4, Society of Pesticides Science, India and Westville Publishing House, New Delhi, pp 178–187

    Google Scholar 

  • Ramani S, Poorani J, Bhumannavar BS (2002) Spiralling whitefly, Aleurodicus dispersus Russell in India. Biocontrol News Inf 23:55–62

    Google Scholar 

  • Rao VP, Ghani AM, Sankaran T, Mathur KC (1971) A review of the biological control of insects and other pests in South East Asia and the Pacific region. Commonwealth Institute of Biological Control Technical Communication, vol 6, 149p. CAB, Slough, UK

    Google Scholar 

  • Reddy GV, Cruz ZT, Guerrero A (2009) Development of an efficient pheromone-based trap** method for the banana root borer Cosmopolites sordidus. J Chem Ecol 35:111–117. https://doi.org/10.1007/s10886-008-9580-6

    Article  CAS  PubMed  Google Scholar 

  • Rena R (2004) Green revolution: Indian agricultural experience-a paradigm for Eritrea. Eritrean Stud Rev 4(1):103–130

    Google Scholar 

  • Renwick JAA, Vite JP (1969) Bark beetle attractants: mechanism of colonization by Dendroctonus frontalis. Nature 224:1222–1122

    Article  CAS  Google Scholar 

  • Rhodes ME, Liburd OE (2006) Evaluation of predatory mites and acramite for control of two-spotted spider mites in strawberries in north Central Florida. J Econ Entomol 4:1291–1298. https://doi.org/10.1093/jee/99.4.1291

    Article  Google Scholar 

  • Rico E, Ballester V, Mensua JL (1998) Survival of two strains of Phthorimaea operculella (Lepidoptera: Gelechiidae) reared on transgenic potatoes expressing a Bacillus thuringiensis crystal protein. Agronomie 18:151–155

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  CAS  PubMed  Google Scholar 

  • Ruiu L (2018) Microbial biopesticides in agroecosystems. Agronomy 8(11):235

    Article  CAS  Google Scholar 

  • Sahayaraj K, Namasivayam SK, Rathi JM (2011) Compatibility of entomopathogenic fungi with extracts of plants and commercial botanicals. Afr J Biotechnol 10:933–938

    Google Scholar 

  • Sankaran T (1974) Natural enemies introduced in recent years for biological control of agricultural pests in India. Indian J Agric Sci 44(7):425–433

    Google Scholar 

  • Saxena RC (1989) Insecticides from neem. In: Arnason JT, BJR P, Morand P (eds) Insecticides of plant origin. ACS symposium series 387. American Chemical Society, Washington, DC, pp 110–135

    Chapter  Google Scholar 

  • Schmutterer H (ed) (1985) The neem tree Azadirachtia indica A. Juss and other meliaceous plants: sources of unique natural products for integrated pest management, medicine, industry and other purposes. VCH, Weinheim, p 696

    Google Scholar 

  • Schwartz PH Jr (1975) Control of insects on deciduous fruit and tree nuts in the home orchard without insecticides. USDA Home Garden Bull 211:36

    Google Scholar 

  • Senthil-Nathan S, Choi MY, Seo HY, Paik CH, Kalaivani K (2009) Toxicity and behavioral effect of 3β, 24, 25-trihydroxycycloartane and beddomei lactone on the rice leaf folder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Ecotoxicol Environ Saf 72:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Han R, Dolinksi C (2012) Entomopathogenic nematode production and application technology. J Nematol 44:206–217

    PubMed  PubMed Central  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2008) Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol Sci Tech 18:279–290

    Article  Google Scholar 

  • Silva FR, Moraes GJ, Gondim MGC, Knapp M, Rouam SL, Paes JLA, Oliveira GM (2010) Efficiency of Phytoseiulus longipes Evans as a control agent of Tetranychus evansi Baker & Pritchard (Acari: Phytoseiidae: Tetranychidae) on screenhouse tomatoes. Neotrop Entomol 6:991–995. https://doi.org/10.1590/S1519-566X2010000600022

    Article  Google Scholar 

  • Silverstein RM, Rodin JO, Wood DL (1966) Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science 154:509–510

    Article  CAS  Google Scholar 

  • Singh SP (1994) Fifteen years of AICRP on biological control. Technical bulletin no. 8. Project Directorate of Biological Control (ICAR), Bangalore, India, 323p

    Google Scholar 

  • Singh SP (2004) Some success stories in classical biological control of agricultural pests in India. APAARI publication 2004/2. FAO-Regional office for Asia and the Pacific, Bangkok, Thailand, 50p

    Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4:1–6

    CAS  Google Scholar 

  • SP-IPM (2006) Biological alternatives to harmful chemical pesticides. IPM Research brief No. 4. SP-IPM Secretariat, International Institute of Tropical Agriculture (IITA), Cotonou, Benin

    Google Scholar 

  • Srikanth J (2007) World and Indian scenario of sugarcanewooly aphid. In: Mukunthan N, Srikanth J, Singaravelu B, Rajula Shanthy T, Thiagarajan R, Puthira Prathap D (eds) Woolly aphid management in Sugarcane. Extn Publ no 154. ICAR-Sugarcane Breeding Institute, Coimbatore, pp 1–12

    Google Scholar 

  • Stewart CN Jr, AdangMJ AJN, Boerma HR, Cardineaux G, Tucker D, Parrot WA (1996a) Genetic transformation recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIA (c) gene. Plant Physiol 112:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996b) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112:115–120

    Article  CAS  PubMed  Google Scholar 

  • Su C, Jiang L, Zhang W (2014) A review on heavy metal contamination in the soil world wide: situation, impact and remediation techniques. Environ Skeptics Crit 3:24–38

    Google Scholar 

  • Subramanyam VK (1955) Control of the fluted scale in Peninsular India. Indian J Entomol 11(1):61–70

    Google Scholar 

  • Tadele S, Emana G (2017) Entomopathogenic effect of Beauveria bassiana (Bals.) and Metarrhizium anisopliae (Metschn.) on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae under laboratory and glasshouse conditions in Ethiopia. J Plant Pathol Microbiol 8:411

    Google Scholar 

  • Takano-Lee M, Hoddle M (2002) Predatory behaviors of Neoseiulus californicus and Galendromus helveolus (Acari: Phytoseiidae) attacking Oligonychus perseae (Acari: Tetranychidae). Exp Appl Acarol 26:13–26. https://doi.org/10.1023/A:1020949531639

    Article  CAS  PubMed  Google Scholar 

  • Tayade S, Patel ZP, Mutkule DS, Kakde AM (2013) Pesticide contamination in food: a review. IOSR J Agric Vet Sci 6:7–11

    Article  Google Scholar 

  • Thirumurugan A, Koodalingam K, Baskaran TL (2004) Status of woolly aphid, Ceratovacuna lanigera Zehntner on sugarcane in northern districts of Tamil Nadu. In Agenda notes of 36th meeting of sugarcane research and development workers of Tamil Nadu. Sugarcane Breeding Institute, Coimbatore, pp 57–63

    Google Scholar 

  • Tumlinson JH, Mitchell ER, Teal PEA, Heath RR, Mengelkoch LJ (1986) Sex pheromone of fall armyworm, Spodoptera frugiperda (J.E. smith): identification of components critical to attraction in the field. J Chem Ecol 12:1909–1926

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Agriculture, Animal and Plant Health Inspection Service (1999) Control of the papaya mealybug, Paracoccus marginatus (Homoptera: Pseudococcidae). Environmental assessment, Riverdale

    Google Scholar 

  • U.S. Department of Agriculture, Animal and Plant Health Inspection Service (2000) Control of the papaya mealybug, Paracoccus marginatus (Homoptera: Pseudococcidae). Environmental assessment (Supplement), Riverdale

    Google Scholar 

  • Usta C (2013) Microorganisms in biological pest control—a review (bacterial toxin application and effect of environmental factors). Curr Prog Biol Res 24:287–317

    Google Scholar 

  • Vasquez GM, Orr DB, Baker JR (2006) Efficacy assessment of Aphidius colemani (Hymenoptera : Braconidae) for suppression of Aphis gossypii (Homoptera : Aphididae) in greenhouse-grown chrysanthemum. J Econ Entomol 99:1104–1111

    Article  PubMed  Google Scholar 

  • Wee SL, Hee AKW, Tan KH (2002) Comparative sensitivity to and consumption of methyl eugenol in three Bactrocera dorsalis (Diptera: Tephritidae) complex sibling species. Chemoecology 12:193–197

    Article  CAS  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Salcedo C, Fang YL, Zhang RJ, Zhang ZN (2012) An overlooked component: (Z)-9-tetradecenal as a sex pheromonein Helicoverpa armigera. J Insect Physiol 58(9):1209–1216. https://doi.org/10.1016/j.**sphys.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Li YX, Collins HL, Cao J, Earle ED, Shelton AM (2001) Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin crylC. J Econ Entomol 94:1547–1552

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus, Metarhizium anisopliae. Biocont Sci Technol 17(9):879–920

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the editor for inviting to contribute this chapter. This work was supported by the ICAR-Indian Institute of Vegetable Research, Varanasi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, A.T. et al. (2021). Biopesticides: An Alternative to Synthetic Insecticides. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_23

Download citation

Publish with us

Policies and ethics

Navigation