Super-Resolution MRI Using Fractional Order Kernel Regression and Total Variation

  • Conference paper
  • First Online:
Proceedings of International Conference on Computational Intelligence

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 463 Accesses

Abstract

In this paper, we adopt a kernel regression approach with steering kernel estimation using fractional order gradients and a Taylor series representation involving integer and fractional order. TV regularization using Fractional-order gradients is known to enhance textural details in smooth regions along with suppression of staircase artifacts. Thus, introducing the fractional-order gradient will make the adaptation of steering kernel more effective. With this motivation, we model a kernel regression framework using TV functional with local fractional-order Taylor series signal representation termed Fractional-order Adaptive Kernel Total Variation (FO-AKTV). Noise suppression in the texture region is achieved by Weighted Non-Local Nuclear Norm (WNLNN) based spectral low rank prior. To achieve the desired super-resolution solution, the cost function with aforementioned priors is minimized using the Alternating Direction Method of Multipliers (ADMM). The proposed method outperforms the state-of-the-art methods such as low rank total variation (LRTV), dictionary learning (DL) and adaptive kernel total variaton (AKTV) in terms of the output signal-to-noise ratio (SNR) at different input noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 235.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Carmi, S. Liu, N. Alon, A. Fiat, D. Fiat et al., Resolution enhancement in MRI. Magn. Reson. Imaging 24(2), 133-154 (2006)

    Google Scholar 

  2. A. Gholipour, J.A. Estroff, S.K. Warfield et al., Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739-1758 (2010)

    Google Scholar 

  3. A.P. Mahmoudzadeh, N.H. Kashou et al., Interpolation-based super-resolution reconstruction: effects of slice thickness. J. Med. Imaging 1(3), 034007 (2014)

    Google Scholar 

  4. J.V. Manjón, P. Coupé, A. Buades, V. Fonov, D.L. Collins, M. Robles et al., Non-local MRI upsampling. Med. Image Anal. 14(6), 784–792 (2010)

    Google Scholar 

  5. Y. Li, B. Song, J. Guo, X. Du, M. Guizani et al., Super-resolution of brain MRI images using overcomplete dictionaries and nonlocal similarity. IEEE Access 7, 25897–25907 (2019)

    Google Scholar 

  6. J. Yang, W. John, S. Huang Thomas, Y. Ma et al., Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861-2873 (2010)

    Google Scholar 

  7. A.S. Chaudhari et al., Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139-2154 (2018)

    Google Scholar 

  8. L.I. Rudin, S. Osher, E. Fatemi et al., Nonlinear total variation based noise removal algorithms. Physica D Nonlin. Phenomena 60(1-4), 259-268 (1992)

    Google Scholar 

  9. A. Chambolle, V. Caselles, D. Cremers, M. Novaga, T. Pock et al., An introduction to total variation for image analysis. Theor. Found. Num. Methods Sparse Recov. 9(263-340), 227 (2010)

    Google Scholar 

  10. T. Chan, A. Marquina, P. Mulet, et al., High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Google Scholar 

  11. M. Aghagolzadeh, A. Segall et al., Kernel smoothing for jagged edge reduction, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2013), pp. 2474–2478

    Google Scholar 

  12. H. Liu, Z. Wei et al., An edge-adaptive structure tensor kernel regression for image interpolation, in 2010 2nd International Conference on Future Computer and Communication, vol. 2, (IEEE, 2010), pp. V2-681-V2-685

    Google Scholar 

  13. H. Takeda, S. Farsiu, P. Milanfar et al., Kernel regression for image processing and reconstruction. IEEE Trans. Image Process 16(2), 349-366 (2007)

    Google Scholar 

  14. H. Takeda, S. Farsiu, P. Milanfar et al., Deblurring using regularized locally adaptive kernel regression. IEEE Trans. Image Process. 17(4), 550-563 (2008)

    Google Scholar 

  15. S. Lefkimmiatis, A. Roussos, P. Maragos, M. Unser et al., Structure tensor total variation. SIAM J. Imaging Sci. 8(2), 1090–1122 (2015)

    Google Scholar 

  16. F. Shi, J. Cheng, L. Wang, P.-T. Yap, aD. Shen et al., LRTV: MR image super-resolution with low-rank and total variation regularizations. IEEE Trans. Med. Imaging 34(120, 2459-2466 (2015)

    Google Scholar 

  17. E.J. Candès, X. Li, Y. Ma, J. Wright et al., Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Google Scholar 

  18. J.-F. Cai, E. J. Candès, Z. Shen et al., A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956-1982 (2010)

    Google Scholar 

  19. S. Gu, L. Zhang, W. Zuo, X. Feng et al., Weighted nuclear norm minimization with application to image denoising, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  20. S. Gu, Q. **e, D. Meng, W. Zuo, X. Feng, L. Zhang et al., Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vision 121(2), 183-208 (2017)

    Google Scholar 

  21. Z. Ren, C. He, Q. Zhang et al., Fractional order total variation regularization for image super-resolution. Signal Process. 93(9), 2408–2421 (Elsevier, 2013)

    Google Scholar 

  22. K. Yang, W. **a, P. Bao, J. Zhou, Y. Zhang et al., Nonlocal weighted nuclear norm minimization based sparse-sampling CT image reconstruction, in IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (IEEE, 2019), pp. 1700–1703

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific and Engineering Research Board (SERB) under Grant CRG/2019/002060 and planning board of Government of Kerala (GO(Rt)No.101/2017/ITD.GOK(02/05/2017)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Suresh Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibrahim, V., Paul, J.S. (2022). Super-Resolution MRI Using Fractional Order Kernel Regression and Total Variation. In: Tiwari, R., Mishra, A., Yadav, N., Pavone, M. (eds) Proceedings of International Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3802-2_15

Download citation

Publish with us

Policies and ethics

Navigation