Polymeric Membranes in Wastewater Treatment

  • Chapter
  • First Online:
Nanoscale Engineering of Biomaterials: Properties and Applications

Abstract

Water covers around 71% of the earth’s surface; however, only 2.5% is fresh water available for consumption. Rapid industrialization and increasing human activities, such as the use of fertilizers, mining, and pesticides, add many harmful organic and inorganic pollutants into the water, which endangers fresh water resources and the ecological environment. Various conventional methods for wastewater treatment, including chemical precipitation, physical adsorption, ion exchange, and membrane separation have been present since long times. Among these methods, polymeric membrane separation has become the main focus of attention over the past couple of decades for wastewater treatment, owing to an ease of operation, low energy consumption, and their unique and proficient separation of contaminants which yields high-quality treated water. In addition, these membranes can be used at an increased range of temperature conditions and the recyclability of these membranes is also very promising. Polymeric membranes for wastewater treatment are generally separated into four major categories, based on their performance, characteristics, pore size, and specific separation qualities. These four categories are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). This book chapter will provide a comprehensive summary for readers to understand the progress in the area of wastewater treatment using polymeric membranes and to highlight the recent advances in polymeric membranes and background study of wastewater treatment. In addition, the potential benefits and challenges of utilizing polymeric membranes for wastewater treatment will be briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Enezi G, Hamoda MF, Fawzi N (2004) Toxic/hazardous substances & environmental engineering. J Environ Sci Health 39(2):455–464

    CAS  Google Scholar 

  • Anna L, Jeffrey WE, Seth BD (2016) Membrane materials for water purification: design, development and application. Environ Sci Water Res Technol 2(1):17–42

    Google Scholar 

  • Argyris P, Haralambous KJ, Loizidou M (2019) Desalination brine disposal methods and treatment technologies-a review. Sci Total Environ 693(3):133545–133567

    Google Scholar 

  • Azadi M, Flavia A, Julien Z, Simon J, James F, Snyder SA (2016) A novel brine precipitation process for higher water recovery. Desalination 385(3):69–74

    Google Scholar 

  • Baker R (2012) Microfiltration, in membrane technology and applications, vol 5, 3rd edn. Wiley, San Francisco, CA, pp 303–325

    Google Scholar 

  • Baroña GNB, Lim J, Choi M, Jung B (2013) Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 325(1):138–147

    Google Scholar 

  • Brady RF Jr (2003) Polymer characterisation and analysis, vol 81. American Chemical Society, Oxford University Press, New York, pp 772–773

    Google Scholar 

  • Bruggena BV, Mänttärib M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63(2):251–263

    Google Scholar 

  • Bumsuk J (2004) Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J Membr Sci 229(2):129–136

    Google Scholar 

  • Busk D, Reddy TA, Hayes TD, Schwegier BRJ (1989) Performance of a pilot-scale hyacinth-based secondary treatment system. J War Poll Cont Fed 61(7):1217–1223

    Google Scholar 

  • Canan A, Papatya K, Ayse A, Çulfaz-Emecen PZ (2019) Co-deposition of stimuli-responsive microgels with foulants during ultrafiltration as a fouling removal strategy. ACS Appl Mater Interfaces 11(20):18711–18719

    Google Scholar 

  • Chong C, Shuang L, Zhao W, Qiang W, Shengqiang N, Shudong S, Changsheng Z (2012) The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. J Membr Sci 417(2):228–236

    Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    CAS  Google Scholar 

  • Chou YN, Chang Y, Wen TC (2015) Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces. ACS Appl Mater Interfaces 7(19):10096–10107

    CAS  PubMed  Google Scholar 

  • Crittenden J, Trussell R, Hand D, Howe K, Tchobanoglous G (2012) Principles of water treatment, vol 2, 2nd edn. Wiley, Hoboken, NJ, pp 672–698

    Google Scholar 

  • Daniel S, Limson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J Inorg Biochem 98(2):266–275

    CAS  PubMed  Google Scholar 

  • Daniel M, Fee P, Wong JE, Andrij P, Matthias W (2014) Temperature-modulated water filtration using microgel-functionalized hollow-fiber membranes. Angew Chem Int Ed 53(22):5706–5710

    Google Scholar 

  • David MW, Emily WT, Kishor GN, Laith AM, Lienhard V, John H (2016) Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res 106(3):272–282

    Google Scholar 

  • David MW, Chakraborty S, Emily WT, Megan HP, Bellona C, Loutatidoud S, Karimigh L, Anne MM, Achillij A, Ghassemig A, Lokesh PP, Snyderjl SA, Curcioc S, Vecitis CD, Hassan AA, Lienhard VJH (2018) A review of polymeric membranes and processes for potable water reuse. Prog Polym Sci 81(2):209–237

    Google Scholar 

  • Davis R, Lomax I, Plummer M (1996) Membranes solve north sea water flood sulfate problems. Oil Gas J 94(48):59–64

    Google Scholar 

  • Deepu A, Gopa K, Daniel P, Mariana AH, Luis Carlos DM, Yves G, Sabu T (2017) Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain Chem Eng 5(2):2026–2033

    Google Scholar 

  • Dongwei M, Wang Z, Tao L, Yunxia H, Yong W (2020) Spray coating of polysulfone/poly(ethylene glycol) block polymer on macroporous substrates followed by selective swelling for composite ultrafiltration membranes. Chin J Chem Eng 29:85–91. https://doi.org/10.1016/j.cjche.2020.05.002

    Article  CAS  Google Scholar 

  • El-Dessouky HT, Ettouney HM (1999) Plastic/compact heat exchangers for single-effect desalination systems. Desalination 122(3):271–277

    CAS  Google Scholar 

  • Elizabeth MVW, Alyson CS, Mukul MS, Young-Hye L, Benny DF (2011) Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Membr Sci 367(1):273–287

    Google Scholar 

  • Elizalde CNB, Al-Gharabli S, Kujawaa J, Mavukkandy M, Hasana SW, Arafat HA (2018) Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Sep Purif Technol 190(9):68–76

    CAS  Google Scholar 

  • Fan X, Su Y, Zhao X, Li Y, Zhang R, Zhao J, Jiang Z, Zhu J, Ma Y, Liu Y (2014a) Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J Membr Sci 464(64):100–109

    CAS  Google Scholar 

  • Fan X, Dong Y, Su Y, Xueting Z, Li Y, Liu J, Jiang Z (2014b) Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process. J Membr Sci 452(2):90–96

    CAS  Google Scholar 

  • Fan X, Su Y, Zhao X, Li Y, Zhang R, Ma T, Liu Y, Jiang Z (2016) Manipulating the segregation behavior of polyethylene glycol by hydrogen bonding interaction to endow ultrafiltration membranes with enhanced antifouling performance. J Membr Sci 499(2):56–64

    CAS  Google Scholar 

  • Fane AG, Wang R, Jia Y, Wang LK, Chen JP, Hung YT, Shammas NK (2011) Membrane technology: past, present and future. Memb Desalinat Technol 13(3):1–45

    CAS  Google Scholar 

  • Fang L, Jianqiang M, Jianfeng Y, Yanga BO, Qing T, Chunhua D (2014) Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344(2):422–430

    Google Scholar 

  • Fathizadeh M, Aroujalian A, Raisi AR (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Membr Sci 375(2):88–95

    CAS  Google Scholar 

  • Fiksdal L, Leiknes TO (2006) The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. J Membr Sci 279(2):364–371

    CAS  Google Scholar 

  • Francesca R, Francesco G, Francesco P, Fabio A, Alberto F (2020) Dimethyl isosorbide as a green solvent for sustainable ultrafiltration and microfiltration membrane preparation. ACS Sustain Chem Eng 8(1):659–668

    Google Scholar 

  • Freeman BD, Pinnau I (2004) Gas and liquid separations using membranes: an overview. ACS Symp Ser 876(1):1–23

    CAS  Google Scholar 

  • Goktas RK, MacLeod M (2016) Remoteness from sources of persistent organic pollutants in the multi-media global environment. Environ Pollut 217(3):33–41

    CAS  PubMed  Google Scholar 

  • Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281(2):581–586

    CAS  Google Scholar 

  • Gu JS, Yu HY, Lei H, Tang ZQ, Wei L, ** Z, Yan MG, Wei XW (2009) Chain-length dependence of the antifouling characteristics of the glycol polymer-modified polypropylene membrane in an SMBR. J Membr Sci 326(26):145–152

    CAS  Google Scholar 

  • Hasan A, Pandey LM (2015) Review: polymers, surface-modified polymers, and self assembled monolayers as surface-modifying agents for biomaterials. Polym-Plast Technol Eng 54(13):1358–1378

    CAS  Google Scholar 

  • Hasan A, Waibhaw G, Tiwari S, Dharmalingam K, Shukla I, Pandey LM (2017) Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J Biomed Mater Res A 105(9):2391–2404

    CAS  PubMed  Google Scholar 

  • Hasan A, Waibhaw G, Saxena V, Pandey LM (2018) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111(3):923–934

    CAS  PubMed  Google Scholar 

  • Hong-mei X, Jun-fu W, **ao-lei W (2014) Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr(VI). Desalination 346(2):122–130

    Google Scholar 

  • Jeonga BH, Hoek EMV, Yan Y, Subramani A, Huang X, Hurwitz G, Ghosh AK, Jawor A (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(2):1–7

    Google Scholar 

  • Jessica B, Damian EH, Hans-Peter EK, Janneke W, Elena K, Carsten P, Thomas AT, Christian NA, Jens A, Benjamin H, Dirk S, Eddy W, Nico B (2013) Is biological treatment a viable alternative for micro pollutant removal in drinking water treatment processes? Water Res 47(16):5955–5976

    Google Scholar 

  • Jianhua Y, Yixing W, Zhenying L, Yujie L, Yang H, Zhen-liang X (2020) High efficient dye removal with hydrolyzed ethanolamine- polyacrylonitrile UF membrane: rejection of anionic dye and selective adsorption of cationic dye. Chemosphere 259(3):127390–127400

    Google Scholar 

  • Kang H, James MD (2007) Development and characterization of poly(vinylidene fluoride)–poly(acrylic acid) pore-filled pH-sensitive membranes. J Membr Sci 301(2):19–28

    Google Scholar 

  • Karima MR, Mohammed OA, Nabeel HA, Hamad FA, Al-Mubaddel FS, Awual MR (2019) Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(II) and cadmium(II) ions removal from wastewater. Ecotoxicol Environ Saf 169(6):479–486

    Google Scholar 

  • Katsuki K, Keita K (2020) Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: effects of precoagulation and identification of the foulant. J Membr Sci 602(1):117975–117984

    Google Scholar 

  • Kerianne MD, Christopher A, Kuo-Le B, Todd E, Schiffman JD (2019) Antifouling ultrafiltration membranes with retained pore size by controlled deposition of zwitterionic polymers and poly(ethylene glycol). Langmuir 35(5):1872–1881

    Google Scholar 

  • Khalifa M, Bidaisee S (2018) The importance of clean water. Sch J Appl Sci Res 1(7):17–20

    Google Scholar 

  • Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M (2016) A novel approach toward fabrication of high performance thin film composite polyamide membranes. Sci Rep 6(6):22069–22078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ES, Deng B (2011) Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J Membr Sci 375(2):46–54

    CAS  Google Scholar 

  • Kim KJ, Fane AG, Fell CJD (1988) The performance of ultrafiltration membranes pretreated by polymers. Desalination 70(3):229–249

    CAS  Google Scholar 

  • Kim IC, Hong S, Tak T, Kwon YN (2013) Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination 309(2):18–26

    Google Scholar 

  • Kim HJ, Lim MY, Jung KH, Kim DG, Lee JC (2015) High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxide. J Mater Chem A 3(13):6798–6809

    CAS  Google Scholar 

  • Krishnasri VK, Munmun M, Sirshendu D (2019) Permeability hysteresis of polypyrrole-polysulfone blend ultrafiltration membranes: study of phase separation thermodynamics and pH responsive membrane properties. Sep Purif Technol 227(2):115736–115750

    Google Scholar 

  • Kwon YN, Shih K, Tang C, Leckie JO (2012) Adsorption of perfluorinated compounds on thin-film composite polyamide membranes. J Appl Polym Sci 124(2):1042–1049

    CAS  Google Scholar 

  • Law YN, Abdul WM, Ching YN, Choe PL, Rosiah R (2014) Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers. Desalination 351(2):19–26

    Google Scholar 

  • Li-** Z, Han-Bang D, **u-Zhen W, Zhuan Y, Bao-Ku Z, You-Yi X (2008) Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization. J Membr Sci 320(2):407–415

    Google Scholar 

  • Liu SJ, Zhao ZY, Li J, Wang J, Qi Y (2013) An anaerobic two-layer permeable reactive bio barrier for the remediation of nitrate-contaminated groundwater. Water Res 47(16):5977–5985

    CAS  PubMed  Google Scholar 

  • Liu P, Chen Q, Li L, Linb S, Shen J (2014) Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. J Mater Chem B 2(41):7222–7231

    CAS  PubMed  Google Scholar 

  • Lu X, Bian X, Shi L (2002) Preparation and characterization of NF composite membrane. J Membr Sci 210(1):3–11

    CAS  Google Scholar 

  • Martınez MB, Vander B, Rodriguez NZ, Alconero PL (2012) Separation of a high-value pharmaceutical compound from waste ethanol by nanofiltration. J Ind Eng Chem 18(5):1635–1641

    Google Scholar 

  • Mathias U, Matuschewski H, Annett O, Hans-Georg H (1996) Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes. J Membr Sci 115(1):31–47

    Google Scholar 

  • McCloskeya BD, Parkb HB, Hao J, Brandon WR, Millera DJ, Freemana BD (2012) A bioinspired fouling-resistant surface modification for water purification membranes. J Membr Sci 413(1):82–90

    Google Scholar 

  • Mikaa AM, Childsa RF, Dickson JM, McCarrya BE, Gagnon DR (1995) A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity. J Membr Sci 108(1):37–56

    Google Scholar 

  • Miyahara T, Tsukada M, Mori MA, Kozuka H (1984) The effect of cadmium on the collagen solubility of embryonic chick bone in tissue-culture. Toxicol Lett 22(1):89–92

    CAS  PubMed  Google Scholar 

  • Morao A, Escobar IC, Amorim MTP, Lopes A, Goncalves IC (2005) Post synthesis modification of a cellulose acetate ultrafiltration membrane for applications in water and wastewater treatment. Environ Prog 24(4):367–382

    CAS  Google Scholar 

  • Pabi S, Amarnath A, Goldstein R, Reekie L (2013) Electric Power Research Institute and Water Research Foundation – electricity use and management in the municipal water supply and wastewater industries. Water Research Foundation: Water Research Foundation. Report No.: 3002001433

    Google Scholar 

  • Parbat D, Gaffar S, Rather AM, Gupta A, Manna U (2017) A general and facile chemical avenue for controlled and extreme regulation of water-wettability in air and oil-wettability under water. Chem Sci 8(9):6542–6554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parka M, Anumol T, Simonc J, Zraickc F, Snyder SA (2017) Pre-ozonation for high recovery of nanofiltration (NF) membrane system: membrane fouling reduction and trace organic compound attenuation. J Membr Sci 523(1):255–263

    Google Scholar 

  • ** M, Zhang X, Liub M, Wua Z, Wang Z (2019) Surface modification of polyvinylidene fluoride membrane by atom-transfer radical-polymerization of quaternary ammonium compound for mitigating biofouling. J Membr Sci 570(2):286–293

    Google Scholar 

  • Qiang W, Jie L, Bosi Q, Baohong F, Changsheng Z (2009) Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels. J Membr Sci 337(2):266–273

    Google Scholar 

  • Ramzi HL, Ezdine F, Mohamed SR, André D (2011) Effect of LbL surface modification on characteristics and performances of cellulose acetate nanofiltration membranes. Desalination 266(3):78–86

    Google Scholar 

  • Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110(4):2448–2471

    CAS  PubMed  Google Scholar 

  • Rashed MN (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. In: Organic pollutants: monitoring, risk and treatment, vol 3, pp 165–178

    Google Scholar 

  • Rather AM, Manna U (2016) Facile synthesis of tunable and durable bulk superhydrophobic material from amine “reactive” polymeric gel. Chem Mater 28(23):8689–8699

    CAS  Google Scholar 

  • Rather AM, Jana N, Hazarika P, Manna U (2017) Sustainable polymeric material for the facile and repetitive removal of oil-spills through the complementary use of both selective-absorption and active-filtration processes. J Mater Chem A 5(44):23339–23348

    CAS  Google Scholar 

  • Raymond DL (1999) Water quality and treatment, vol 5. American Water Works Association and McGraw-Hill, New York, pp 1659–1673

    Google Scholar 

  • Reddy AVR, Mohan DJ, Bhattacharya A, Shah VJ, Ghosh PK (2003) Surface modification of ultrafiltration membranes by pre adsorption of a negatively charged polymer: I. permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties. J Membr Sci 214(2):211–221

    CAS  Google Scholar 

  • Ren X, Zhao C, Du S, Wang T, Luan Z, Wang J, Hou D (2010) Fabrication of asymmetric poly(m-phenylene isophthalamide) nanofiltration membrane for chromium (VI) removal. J Environ Sci 22(9):1335–1341

    CAS  Google Scholar 

  • Rodriguez C, Buynder PV, Lugg R, Blair P, Devine B, Cook A, Weinstein P (2009) Indirect potable reuse: a sustainable water supply alternative. Int J Environ Res Public Health 6(3):1174–1203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong Z, Peng-Fei R, Hao-Cheng Y, Zhi-Kang X (2014) Fabrication of antifouling membrane surface by poly(sulfobetainemethacrylate)/polydopamine co-deposition. J Membr Sci 466(1):18–25

    Google Scholar 

  • Roy Y, David MW, Lienhard JH (2017) Effect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigration. Desalination 420(3):241–257

    CAS  Google Scholar 

  • Saljoughi E, Mousavi SM (2012) Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Sep Purif Technol 90(6):22–30

    CAS  Google Scholar 

  • Sang HY, Junji W, Yasuhiko I, Kazuhiko I (2005) Coupled-diffusion transport of Cr(VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. J Membr Sci 249(2):133–141

    Google Scholar 

  • Saraswathia MSA, Kausalyaa R, Kaleekkalb NJ, Rana D, Nagendrana A (2017) BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes. J Environ Chem Eng 5(3):2937–2943

    Google Scholar 

  • Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, Keinath SE, Dvornic PR (2010) Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci 349(2):421–428

    CAS  Google Scholar 

  • Seiple TE, Coleman AM, Skaggs RL (2017) Municipal wastewater sludge as a sustainable bioresource in the United States. J Environ Manage 197:673–680

    CAS  PubMed  Google Scholar 

  • Seung JP, Gouri SD, Schütt F, Rainer A, Yogendra KM, Kumud MT, Tae YK (2019) Visible-light photocatalysis by carbonnano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater 11(2):8–21

    Google Scholar 

  • Shibutani T, Kokitaura T, Ohmukai Y, Maruyama T, Nakatsuka S, Watabe T, Matsuyama H (2011) Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives. J Membr Sci 376(1):102–109

    CAS  Google Scholar 

  • Shiklomanov IA (1993) Water in crisis: a guide to the world’s fresh water resources, vol 5. Oxford University Press, New York, pp 13–24

    Google Scholar 

  • Shome A, Maji K, Rather AM, Yashwanth A, Patel DK, Manna U (2019) A scalable chemical approach for synthesis of highly tolerant and efficient oil-absorbent. Chem Asian J 14(24):4732–4740

    CAS  PubMed  Google Scholar 

  • Sidney L, Srinivasa S (1963) Sea water demineralization by means of an osmotic membrane. Adv Chemother 38(9):117–132

    Google Scholar 

  • Simcik M, Ruzicka MC, Karaszova M, Sedlakova Z, Vejrazka J, Vesely M, Capek P, Friess K, Izak P (2016) Polyamide thin-film composite membranes for potential raw biogas purification: experiments and modeling. Sep Purif Technol 167(2):163–173

    CAS  Google Scholar 

  • Sinha MK, Purkait MK (2013) Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. J Membr Sci 437(3):7–16

    CAS  Google Scholar 

  • Siobhan FEB, Maria DK, Melvyn RD, El-Hodalia DEY, Schippers JC (2002) The modified fouling index using ultrafiltration membranes (MFI-UF): characterisation, filtration mechanisms and proposed reference membrane. J Membr Sci 197(2):1–21

    Google Scholar 

  • Souzanchia S, Vahabzadeha F, Shahrzad F, Seyed NH (2013) Performance of an annular sieve-plate column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation. Chem Eng J 223(23):246–267

    Google Scholar 

  • Stefan B, Arcadio S, Patricia L, Lidia B, Bruggena BV, Jeonghwan K (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389(8):155–161

    Google Scholar 

  • Su YN, Lin WS, Hou CH, Den W (2014) Performance of integrated membrane filtration and electrodialysis processes for copper recovery from wafer polishing wastewater. J Water Process Eng 4(3):149–158

    Google Scholar 

  • Tama LS, Tanga TW, Laub GN, Sharma KR, Chen GH (2007) A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination 202(3):106–113

    Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxic opathologic implications for public health. Environ Toxicol 18(3):149–175

    CAS  PubMed  Google Scholar 

  • Tingjian H, Junfeng L, Yuan C, Tianhaoyue Z, Pengqing L (2020) Improving permeability and antifouling performance of poly (ether ether ketone) membranes by photo-induced graft polymerization. Mater Today Commun 23(3):100945–100952

    Google Scholar 

  • Tolba OM, Motlak GM, Fadali M, Khalil OA, Almajid KA, Barakat Kim KNA (2015) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J 279(3):631–638

    Google Scholar 

  • Tripathi BD, Shukla SC (1991) Biological treatment of wastewater by selected aquatic plants. Environ Pollut 69(1):69–78

    CAS  PubMed  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2017) National water quality inventory: report to Congress, EPA 841-R-16-011

    Google Scholar 

  • Vahid V, Majid E, Mohammad HDAF (2014) Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J Membr Sci 466(2):70–81

    Google Scholar 

  • Vanessa FC, Daniela MC, Clarisse R, Margarida MF, Senentxu LM (2018) Fluorinated polymers as smart materials for advanced biomedical applications. Polymers 10(2):161–187

    Google Scholar 

  • Vázquez MI, Lara RDP, Benavente GJ (2005) Modification of cellulosic membranes by γ-radiation: effect on electrochemical parameters and protein adsorption. Colloids Surf A Physicochem Eng Asp 270(7):245–251

    Google Scholar 

  • Victor K, Daniel JJ, Hilal N (2014) Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Adv Colloid Interface Sci 206(86):116–140

    Google Scholar 

  • Virgil K (2003) Clean water: an introduction to water quality and water pollution control, 2nd edn. Corvallis, Oregon State University Press

    Google Scholar 

  • Visakh PM, Olga N (2016) Nanostructured polymer membranes: applications, state-of-the-art, new challenges and opportunities. In: Nanostructured polymer membranes: applications, vol 2, pp 1–25

    Google Scholar 

  • Vishal KV, Senthilmurugan S (2019) Fouling resistant sericin-coated polymeric microfiltration membrane. J Chem Technol Biotechnol 94(11):3637–3649

    Google Scholar 

  • Wang L, Wang N, Zhang G, Shulan J (2013) Covalent crosslinked assembly of tubular ceramic-based multilayer nanofiltration membranes for dye desalination. AICHE J 59(10):3834–3842

    CAS  Google Scholar 

  • Wang D, Duan H, Lüa J, Lü C (2017) Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe3O4@Au magnetic nanocomposites for enhanced catalytic applications. J Mater Chem A 5(10):5088–5097

    CAS  Google Scholar 

  • Wang Y, Zhang H, Song C, Gao C, Zhu G (2020) Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J Membr Sci 614(2):118496–118507

    CAS  Google Scholar 

  • **a L, Yiming C, Guodong K, Haijun Y, **ngming J, Quan Y (2014) Surface modification of polyamide nanofiltration membrane by grafting zwitterionic polymers to improve the antifouling property. J Appl Polym Sci 131(23):41144–41152

    Google Scholar 

  • **angli Q, Zhenjia Z, Zhenghua P (2007) Hydrophilic modification of ultrafiltration membranes and their application in salvia Miltiorrhiza decoction. Sep Purif Technol 56(3):265–269

    Google Scholar 

  • **angrong C, Yi S, Fei S, Yinhua W (2011) Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: effect of copolymer composition and PEG chain length. J Membr Sci 384(2):44–51

    Google Scholar 

  • ** B, Lu S (2020) Mussel−/diatom-inspired silicified membrane for high-efficiency water remediation. J Membr Sci 597(9):117353–117361

    Google Scholar 

  • Xu Y, Yao Y, Yu H, Shi B, Gao S, Zhang L, Miller AL, Fang JC, Wang X, Huang K (2019) Nanoparticle-encapsulated hollow porous polymeric nanosphere frameworks as highly active and tunable size-selective catalysts. ACS Macro Lett 8(10):1263–1267

    CAS  Google Scholar 

  • Yan F, Chen H, Lü Y, Lü Z, Yu S, Liu M, Gaoc C (2016) Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J Membr Sci 513(2):108–116

    CAS  Google Scholar 

  • Yang YF, Hu HQ, Yang L, Wan LS, Xu ZK (2011) Membrane surface with antibacterial property by grafting polycation. J Membr Sci 376(1):132–141

    CAS  Google Scholar 

  • Yang Z, Zhou Y, Feng Z, Rui X, Zhang T, Zhang Z (2019) A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 11(8):1252–1273

    CAS  PubMed Central  Google Scholar 

  • Yevjevich V (2009) Water and civilization. Water J 17(4):163–171

    Google Scholar 

  • Yong-Hong Z, Kin-Ho W, Renbi B (2010) A novel electrolyte-responsive membrane with tunable permeation selectivity for protein purification. ACS Appl Mater Interfaces 2(1):203–211

    Google Scholar 

  • Young-Hye L, Bryan DM, Ratnam S, Ankit V, Benny F, Majed N, James H, Alshakim N, Robert A (2011) Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity. J Membr Sci 372(2):285–291

    Google Scholar 

  • Zhao W, Yanlei S, Chao L, Qing S, Xue N, Jiang Z (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318(2):405–412

    CAS  Google Scholar 

  • Zhen L, Chuan H, **aodong W, Zhong W, Mengmeng C, Qiugen Z, Aimei Z, Qinglin L (2018) Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. J Membr Sci 554(2):125–133

    Google Scholar 

  • Zhifeng F, Zhi W, Ning S, Jixiao W, Shichang W (2008) Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers. J Membr Sci 320(2):363–371

    Google Scholar 

  • Zhu WP, Gao J, Sun SP, Zhang S, Chung TS (2015) Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J Membr Sci 487(2):117–126

    CAS  Google Scholar 

  • Zinadini S, Zinatizadeh AA, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349(3):145–154

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoguang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, A.M., Xu, Y., Dupont, R.L., Wang, X. (2022). Polymeric Membranes in Wastewater Treatment. In: Pandey, L.M., Hasan, A. (eds) Nanoscale Engineering of Biomaterials: Properties and Applications . Springer, Singapore. https://doi.org/10.1007/978-981-16-3667-7_17

Download citation

Publish with us

Policies and ethics

Navigation