Generation and Detection of Terahertz Signal

  • Chapter
  • First Online:
Broadband Terahertz Communication Technologies
  • 811 Accesses

Abstract

This chapter mainly introduces the generation and detection of terahertz signal in terahertz communication system. The frequency of terahertz signal is high, so the generation of stable, continuous and low-cost high-quality signal has become one of the bottlenecks for further development and commercialization of terahertz communication. Meanwhile, high-sensitivity terahertz receivers and advanced digital signal processing algorithms are also needed to ensure the quality of communication system at the receiver end. Therefore, this chapter introduces the main ways to generate and detect terahertz signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Asada, N. Orihashi, S. Suzuki, Voltage-controlled harmonic oscillation at about 1 THz in resonant tunneling diodes integrated with slot antennas. Jpn. J. Appl. Phys. 46, 2904–2906 (2007)

    Article  ADS  Google Scholar 

  2. T. Unuma, N. Sekine, K. Hirakawa, Dephasing of bloch oscillating electrons in GaAs-based superlattices due to interface roughness scattering. Appl. Phys. Lett. 89(16), 161913 (2006)

    Google Scholar 

  3. R. Lai, X.B. Mei, W.R. Deal, et al., Sub 50 nm InP HEMT device with Fmax greater than 1 THz, in 2007 IEEE International Electron Devices Meeting (IEEE, 2007), pp. 609–611

    Google Scholar 

  4. L. Moeller, J. Federici, K. Su, 2.5 Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source. Electron. Lett. 47(15), 856–858 (2011)

    Google Scholar 

  5. L. Moeller, J. Federici, K. Su, THz wireless communications: 2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mW THz source, in General Assembly and Scientific Symposium, 2011 URSI (IEEE, 2011), pp. 1–4

    Google Scholar 

  6. R. Safian, G. Ghazi, N. Mohammadian, Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt. Eng. 58(11), 110901 (2019)

    Google Scholar 

  7. B. Vidal, Photonic-assisted G-band wireless links for 5G backhaul, in ICTON 2018, Paper We.C5.3.

    Google Scholar 

  8. P. Tan et al., Terahertz radiation sources based on free electron, lasers and their applications. Sci. China Inform. Sci. (English Version) 55(1), 1–15 (2012)

    Article  ADS  Google Scholar 

  9. C.Y. Tong, A. Trifonov, A. Shurakov, et al., A microwave-operated hot-electron-bolometric power detector for terahertz radiation. IEEE Trans. Appl. Superconduc. 1–1 (2014)

    Google Scholar 

  10. R. Guzman, G. Ducournau, L.E.G. Munoz, et al., Compact direct detection Schottky receiver modules for sub-terahertz wireless communications, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). (IEEE, 2016)

    Google Scholar 

  11. T. Harter, C. Füllner, J.N. Kemal, et al., 110 m THz wireless transmission at 100 Gbit/s using a Kramers-Kronig Schottky barrier diode receiver, in ECOC 2019

    Google Scholar 

  12. Y. Jianjun, Photon Assisted Millimeter Wave Communication Technology (Science Press, Bei**g, 2018)

    Google Scholar 

  13. T. Harter, S. Ummethala, M. Blaicher et al., Wireless THz link with optoelectronic transmitter and receiver. Optica 6, 1063–1070 (2019)

    Article  ADS  Google Scholar 

  14. S. Nellen, B. Globisch, B. Robert, R.B. Kohlhaas, L. Liebermeister, M. Schell, Recent progress of continuous-wave terahertz systems for spectroscopy, non-destructive testing, and telecommunication. SPIE 10531 (2018)

    Google Scholar 

  15. https://www.finisar.com/communication-components/bpdv412xr

  16. Y. Jianjun, N. Chi, L. Chen, Coherent Optical Communication Technology Based on Digital Signal Processing (Posts and Telecommunications Press, Bei**g, 2013)

    Google Scholar 

  17. T. Kleine-Ostmann, T. Nagatsuma, A review on terahertz communications research. J. Infrared Millimeter Terahertz Waves 32(2), 143–171 (2011)

    Article  Google Scholar 

  18. S. Nellen, T. Ishibashi, A. Deninger, et al., Experimental comparison of UTC and PIN-photodiodes for continuous-wave terahertz generation. J. Infrared Millimeter Terahertz Waves (2019)

    Google Scholar 

  19. H.T. Friis, A note on a simple transmission formula. Proc. IRE 34(5), 254–256 (1946)

    Article  Google Scholar 

  20. S. Rohit, S. Douglas, Beyond 5G: THz spectrum futures and implications for wireless communication, in 30th European Conference of the International Telecommunications Society (ITS): “Towards a Connected and Automated Society”, Helsinki, Finland, 16th–19th June 2019 (International Telecommunications Society (ITS), Helsinki)

    Google Scholar 

  21. S. Ummethala, T. Harter, K. Koehnle, et al., THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 13, 519–524 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, J. (2021). Generation and Detection of Terahertz Signal. In: Broadband Terahertz Communication Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-3160-3_2

Download citation

Publish with us

Policies and ethics

Navigation