Evolution of Snakes and Systematics of the “Big Four” Venomous Snakes of India

  • Chapter
  • First Online:
The 'Big Four’ Snakes of India

Abstract

The evolution of snakes from an ancestral burrowing lizard remains disputed because the missing link between snakes and lizards is yet to be recognized. The available fossil record has led to the postulation that the ancestors of snakes made their first appearance during the Cretaceous Period. In recent decades, several studies have shown the mechanism of limb loss in snakes, though the concept is widely debated and the subject of speculation among evolutionary biologists. About 23–65 million years ago during two-thirds of the Tertiary Period, smaller python-like snakes were most prevalent on earth. Phylogenetic studies have indicated that the evolution of snakes involved a steady trend toward greater surface activity, enlargement of the body size, and an enlarged gape. The rear-fanged colubrid snakes evolved 35 to 55 million years ago; however, the origin of the Viperidae and Elapidae from the colubrid snakes is less clear. One group of researchers proposed a common single origin of the Viperidae and the Elapidae from colubrids while another group claimed that the elapids arose from the opisthoglyphous snakes and the viperids were derived from the proteroglyphous colubrids. In this chapter, different theories from evolutionary biologists are examined to explain the origin and evolution of snakes. The “Big Four” venomous snakes of India (N. naja and B. caeruleus of the Elapidae family, and D. russelii and E. carinatus of the Viperidae family) belong to the Infraorder Caenophidia and they all are members of the front-fanged advanced snakes. In addition, the occurrence of different species of the “Big Four” venomous snakes and their geographical distribution in the Indian subcontinent are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albalat, R., & Cañestro, C. (2016). Evolution by gene loss. Nature Reviews. Genetics, 17, 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Burbrink, F. T., & Crother, B. I. (2011). Evolution and taxonomy of snakes. In R. D. Aldridge & D. M. Sever (Eds.), Reproductive biology and phylogeny of snakes (pp. 19–53). CRC Press.

    Chapter  Google Scholar 

  • Cadle, J. E. (1988). Phylogenetic relationships among advanced snakes. A molecular perspective (Vol. 119, pp. 1–77). University of California Press.

    Google Scholar 

  • Cherlin, V. A., & Hughes, B. (1984). New facts on the taxonomy of snakes of the genus Echis. Smithsonian Herpetological Information Service, 61, 1–7.

    Google Scholar 

  • Cundall, D., & Irish, F. (2008). In C. Gans et al. (Eds.), Biology of the Reptilia (Vol. 20, pp. 349–692). New York Society for the Study of Amphibians and Reptiles.

    Google Scholar 

  • Da Silva, F. O., Fabre, A.-C., Savriama, Y., Ollonen, J., Mahlow, K., Herrel, A., & Nicolas Di-Poï, J. M. (2018). The ecological origins of snakes as revealed by skull evolution. Nature Communication, 9, 376.

    Article  CAS  Google Scholar 

  • Dessauer, H. C. J., Cadle, E., & Lswson, R. (1987). Patterns of snake evolution suggested by their proteins. Fieldiana: Zoology., new series, 34, 1–34.

    Google Scholar 

  • Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution, 63, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Emerling, C. A. (2017). Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes. Molecular Phylogenetics and Evolution, 115, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Fabre, A. C., Bickford, D., Segall, M., & Herrel, A. (2016). The impact of diet, habitat use, and behavior on head shape evolution in homalopsid snakes. Biological Journal of the Linnean Society, 118, 634–647.

    Article  Google Scholar 

  • Golay, P., Smith, H. M., Broadley, D. G., Dixon, J. R., McCarthy, C. J., Rage, J.-C., Schitti, B., & Toriba, M. (1993). Endoglyphs and other major venomous snakes of the world: A checklist. Azemiops S.A. Herpetological Data Center.

    Google Scholar 

  • Herrmann, H.-W., Joger, U., & Nilson, G. (1992). Phylogeny and systematics of Viperinae snakes. III: Resurrection of the genus Macrovipera (Reuss, 1927) as suggested by biochemical evidence. Amphibia-Reptilia, 13(4), 375–392.

    Article  Google Scholar 

  • Hill, R. E., & Lettice, L. A. (2013). Alterations to the remote control of Shh gene expression cause congenital abnormalities. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20120357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsiang, A. Y., Field, D. J., Webster, T. H., Behlke, A. D. B., Davis, M. B., Racicot, R. A., & Gauthier, J. A. (2015). The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Head, J. J., & Polly, P. D. (2015). Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520, 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, B., & Mukherjee, A. K. (2019). Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. Journal of Proteins and Proteomics, 10, 149–164.

    Article  Google Scholar 

  • Kardong, K. V. (1982). The evolution of the venom apparatus in snakes from colubrids to viperids and elapids. Memórias do Instituto Butantan, 46, 106–118.

    Google Scholar 

  • Keogh, J. S. (1998). Molecular phylogeny of elapid snakes and a consideration of their biogeographic history. Biological Journal of the Linnean Society, 63, 177–203.

    Article  Google Scholar 

  • Knight, A., & Mindell, D. P. (1994). On the phylogenetic relationship of Colubrinae, Elapidae, and Viperidae and the evolution of front-fanged venom systems in snakes. Copeia, 1, 1–9.

    Article  Google Scholar 

  • Kvon, E. Z., Kamneva, O. K., Melo, U. S., Barozzi, I., Osterwalder, M., Mannion, B. J., Tissières, V., Pickle, C. S., Plajzer-Frick, I., Lee, E. A., Kato, M., Garvin, T. H., Akiyama, J. A., Afzal, V., Lopez-Rios, J., Rubin, E. M., Dickel, D. E., Pennacchio, L. A., & Visel, A. (2016). Progressive loss of function in a limb enhancer during snake evolution. Cell, 167, 633–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenk, P., Kalyabina, S., Wink, M., & Joger, U. (2001). Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 19(1), 94–104.

    Article  CAS  PubMed  Google Scholar 

  • Lettice, L. A., Williamson, I., Devenney, P. S., Kilanowski, F., Dorin, J., & Hill, R. E. (2014). Development of five digits is controlled by a bipartite long-range cis-regulator. Development, 141, 1715–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maris, J. (1997). The origin of snakes. In Snakes (p. 10). Grang Books.

    Google Scholar 

  • McCarthy, C. J. (1985). Monophyly of elapid snakes (Serpentes: Elapidae). An assessment of the evidence. Zoological Journal of the Linnean Society, 83, 79–93.

    Article  Google Scholar 

  • Mukherjee, A. K., & Maity, C. R. (2002). Biochemical composition, lethality and pathophysiology of venom from two cobras--Naja naja and N. kaouthia. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 131, 125–132.

    Article  CAS  Google Scholar 

  • Obst, F. J. (1983). Zur Kenntnis des Schlangengattung Vipera (Reptilia, Serpentes, Viperidae). Zoologische Abhandlungen, 38, 229–235.

    Google Scholar 

  • Quijada-Mascarenas, A., & Wuster, W. (2010). Recent advances in venomous snake systematics. In S. P. Mackessy (Ed.), Handbook of venom and reptiles (pp. 25–64). CRC Press.

    Google Scholar 

  • Rieppel, O. A. (1988). Review of the origin of snakes. Evolutionary Biology, 22, 37–130.

    Article  Google Scholar 

  • Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M., & Shiroishi, T. (2005). Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development, 132, 797–803.

    Article  CAS  PubMed  Google Scholar 

  • Santra, V., Owens, J. B., Graham, S., Wuster, W., Kuttalam, S., Bharti, U., Selvan, M., Mukherjee, M., & Malhotra, A. (2019). Confirmation of Naja oxiana in Himachal Pradesh, India. Herpetological Bulletin, 150, 26–28.

    Article  Google Scholar 

  • Scanlon, J. D., & Lee, M. S. Y. (2011). The major clades of living snakes: Morphological evolution, molecular phylogeny, and divergence dates. In R. D. Aldridge & D. M. Sever (Eds.), Reproductive biology and phylogeny of snakes (pp. 55–95). Science Publishers.

    Chapter  Google Scholar 

  • Sharma, B. D. (1998). Fauna of Indian snakes. In Snakes in India: A source book (pp. 87–108). Asiatic Publishing House.

    Google Scholar 

  • Thorpe, R. S., Pook, C. E., & Malhotra, A. (2007). Phylogeography of the Russell’s viper (Daboia russelii) complex in relation to variation in the colour pattern and symptoms of envenoming. Herpetological Journal, 17(4), 209–218.

    Google Scholar 

  • Tsai, I. H., Lu, P. J., & Su, J. C. (1996). Two types of Russell’s viper revealed by variation in phospholipases A2 from venom of the subspecies. Toxicon, 34(1), 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Whitaker, R., & Captain, A. (2004). Snakes of India: The field guide (p. 495). Draco Books. ISBN 81-901873-0-9.

    Google Scholar 

  • Wüster, W., & Thorpe, R. S. (1989). Population affinities of the Asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biological Journal of the Linnean Society, 36, 391–409.

    Article  Google Scholar 

  • Wüster, W., & Thorpe, R. S. (1992). Dentitional phenomena in cobras revisited: Spitting and fang structure in the Asiatic species of Naja (Serpentes: Elapidae). Herpetologica, 48(4), 424–434.

    Google Scholar 

  • Wüster, W., Thorpe, R. S., Cox, M. J., **takune, P., & Nabhitabhata, J. (1995). Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). Journal of Evolutionary Biology, 8, 493–510.

    Article  Google Scholar 

  • Wüster, W., Crookes, S., Ineich, I., Mané, Y., Pook, C. E., Trape, J., & Broadley, D. G. (2007). The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African Spitting Cobras (Serpentes: Elapidae: Naja nigricollis Complex). Molecular Phylogenetics and Evolution, 45(2), 437–453.

    Article  PubMed  CAS  Google Scholar 

  • Wüster, W., Philippe Golay, P., David, A., & Warrell, D. A. (1997). Synopsis of recent developments in venomous snake systematics. Toxicon, 3, 319–334.

    Article  Google Scholar 

  • Zeller, R., López-Rı’os, J., & Zuniga, A. (2009). Vertebrate limb bud development: Moving towards integrative analysis of organogenesis. Nature Reviews Genetics, 10, 845–858.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, A.K. (2021). Evolution of Snakes and Systematics of the “Big Four” Venomous Snakes of India. In: The 'Big Four’ Snakes of India. Springer, Singapore. https://doi.org/10.1007/978-981-16-2896-2_2

Download citation

Publish with us

Policies and ethics

Navigation