Laminar Burning Velocity Measurements at Elevated Pressure and Temperatures and the Challenges in Kinetic Scheme Optimization

  • Chapter
  • First Online:
Advances in Energy and Combustion

Part of the book series: Green Energy and Technology ((GREEN))

  • 1198 Accesses

Abstract

Reliable data on fundamental combustion parameters are essential to validate kinetic schemes under a wide range of experimental conditions. Laminar burning velocity is one such fundamental intrinsic property of a flammable mixture. The challenges in determining the effect of simultaneous change in temperature and pressure on the burning velocity of low-calorific value syngas–air mixtures are presented. Comparing the present experiments with available kinetic schemes at elevated temperature and pressure reveals poor prediction capabilities. The major contributing factor to this discrepancy is the high sensitivity of key reactions at high temperatures and pressure conditions. The challenges of direct use of the experimental data to optimize kinetic schemes for the syngas–air mixtures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(\alpha\) :

Temperature exponent

\(\alpha_{{\text{t}}}\) :

Thermal diffusivity

\(\beta\) :

Pressure exponent

\(\delta\) :

Flame thickness

\(\phi\) :

Equivalence ratio

\(\rho\) :

Mixture density

\(S_{u}\) :

Laminar burning velocity

\(\chi_{{{\text{H}}_{{2}} }}\) :

Hydrogen content

FFCM:

Foundational fuel chemistry model

GRI:

Gas research institute

IGCC:

Integrated gasification and combined cycle

LBV:

Laminar burning velocity

LCV:

Low-calorific value

References

  1. Shih H-Y (2009) Computed extinction limits and flame structures of H2/O2 counterflow diffusion flames with CO2 dilution. Int J Hydrogen Energy 34(9):4005–4013

    Article  MathSciNet  Google Scholar 

  2. Natarajan J, Lieuwen T, Seitzman J (2007) Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure. Combust Flame 151(1–2):104–119

    Article  Google Scholar 

  3. Burke MP, Dryer FL, Ju Y (2011) Assessment of kinetic modeling for lean H2/CH4/O2/diluent flames at high pressures. Proc Combust Inst 33(1):905–912

    Article  Google Scholar 

  4. Wang J, Huang Z, Kobayashi H, Ogami Y (2012) Laminar burning velocities and flame characteristics of CO–H2–CO2–O2 mixtures. Int J Hydrogen Energy 37(24):19158–19167

    Article  Google Scholar 

  5. Varghese RJ, Kolekar H, Hariharan V, Kumar S (2018) Effect of CO content on laminar burning velocities of syngas-air premixed flames at elevated temperatures. Fuel 214:144–153

    Article  Google Scholar 

  6. Bouvet N, Chauveau C, Gökalp I, Halter F (2011) Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proc Combust Inst 33(1):913–920

    Article  Google Scholar 

  7. Burbano HJ, Pareja J, Amell AA (2011) Laminar burning velocities and flame stability analysis of H2/CO/air mixtures with dilution of N2 and CO2. Int J Hydrogen Energy 36(4):3232–3242

    Article  Google Scholar 

  8. Lee JH, Kim JH, Park JH, Kwon OC (2010) Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production. Int J Hydrogen Energy 35(3):1054–1064

    Article  Google Scholar 

  9. Prathap C, Ray A, Ravi MR (2012) Effects of dilution with carbon dioxide on the laminar burning velocity and flame stability of H2–CO mixtures at atmospheric condition. Combust Flame 159(2):482–492

    Article  Google Scholar 

  10. Yan B, Wu Y, Liu C, Yu JF, Li B, Li ZS et al (2011) Experimental and modeling study of laminar burning velocity of biomass derived gases/air mixtures. Int J Hydrogen Energy 36(5):3769–3777

    Article  Google Scholar 

  11. Shang R, Zhang Y, Zhu M, Zhang Z, Zhang D, Li G (2016) Laminar flame speed of CO2 and N2 diluted H2/CO/air flames. Int J Hydrogen Energy 41:15056–15067

    Article  Google Scholar 

  12. Han M, Ai Y, Chen Z, Kong W (2015) Laminar flame speeds of H2/CO with CO2 dilution at normal and elevated pressures and temperatures. Fuel 148:32–38

    Article  Google Scholar 

  13. He Y, Wang Z, Weng W, Zhu Y, Zhou J, Cen K (2014) Effects of CO content on laminar burning velocity of typical syngas by heat flux method and kinetic modeling. Int J Hydrogen Energy 39(17):9534–9544

    Article  Google Scholar 

  14. Maruta K, Kataoka T, Kim NI, Minaev S, Fursenko R (2005) Characteristics of combustion in a narrow channel with a temperature gradient. Proc Combust Inst 30(2):2429–2436

    Article  Google Scholar 

  15. Kumar S, Maruta K, Minaev S, Fursenko R (2008) Appearance of target pattern and spiral flames in radial microchannels with CH4-air mixtures. Physics of Fluids. 2008;20.

    Google Scholar 

  16. Smooke DM, Miller JA, Kee RJ (1983) Determination of adiabatic flame speeds by boundary value methods. Combust Sci Technol 34:79–90

    Article  Google Scholar 

  17. Zhou C-W, Li Y, O’Connor E, Somers KP, Thion S, Keesee C et al (2016) A comprehensive experimental and modeling study of isobutene oxidation. Combust Flame 167:353–379

    Article  Google Scholar 

  18. Metcalfe WK, Burke SM, Ahmed SS, Curran HJ (2013) A hierarchical and comparative kinetic modeling study of C1–C2 hydrocarbon and oxygenated fuels. Int J Chem Kinet 45(10):638–675

    Article  Google Scholar 

  19. Li Y, Zhou C-W, Somers KP, Zhang K, Curran HJ (2017) The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc Combust Inst 36(1):403–411

    Article  Google Scholar 

  20. Davis SG, Joshi AV, Wang H, Egolfopoulos F (2005) An optimized kinetic model of H2/CO combustion. Proc Combust Inst 30:1283–1291

    Article  Google Scholar 

  21. Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M et al (1999) GRI-Mech 3.0. p. http://www.me.berkeley.edu/gri_mech.

  22. Smith G, Tao Y, Wang H (2016) Foundational fuel chemistry model version 1.0 (FFCM-1). https://web.stanford.edu/group/haiwanglab/FFCM1

  23. Akram M, Saxena P, Kumar S (2013) Laminar burning velocity of methane–air mixtures at elevated temperatures. Energy Fuels 27(6):3460–3466

    Article  Google Scholar 

  24. Akram M, Kumar S (2012) Measurement of laminar burning velocity of liquified petroleum gas air mixtures at elevated temperatures. Energy Fuels 26(6):3267–3274

    Article  Google Scholar 

  25. Varghese RJ, Kolekar H, Kumar S (2019) Laminar burning velocities of H2/CO/CH4/CO2/N2 -air mixtures at elevated temperatures. Int J Hydrogen Energy 44(23):12188–12199

    Article  Google Scholar 

  26. Varghese RJ, Kolekar H, Kumar S (2019) Demarcation of reaction effects on laminar burning velocities of diluted syngas–air mixtures at elevated temperatures. Int J Chem Kinet 51(2):95–104

    Article  Google Scholar 

  27. Varghese RJ, Kumar S (2020) Machine learning model to predict the laminar burning velocities of H2/CO/CH4/CO2/N2/air mixtures at high pressure and temperature conditions. Int J Hydrogen Energy 45(4):3216–3232

    Article  Google Scholar 

  28. Katoch A, Asad M, Minaev S, Kumar S (2016) Measurement of laminar burning velocities of methanol–air mixtures at elevated temperatures. Fuel 182:57–63

    Article  Google Scholar 

  29. Katoch A, Chauhan A, Kumar S (2018) Laminar burning velocity of n-propanol and air mixtures at elevated mixture temperatures. Energy Fuels 32(5):6363–6370

    Article  Google Scholar 

  30. Varghese RJ, Kishore VR, Akram M, Yoon Y, Kumar S (2017) Burning velocities of DME(dimethyl ether)-air premixed flames at elevated temperatures. Energy 126

    Google Scholar 

  31. Kumar R, Katoch A, Singhal A, Kumar S (2018) Experimental investigations on laminar burning velocity variation of methyl formate-air mixtures at elevated temperatures. Energy Fuels 32(12):12936–12948

    Article  Google Scholar 

  32. Varghese RJ, Kolekar H, Kishore VR, Kumar S (2019) Measurement of laminar burning velocities of methane-air mixtures simultaneously at elevated pressures and elevated temperatures. Fuel 257:116120

    Article  Google Scholar 

  33. Turns SR (1996) Introduction to combustion: McGraw-Hill Companies

    Google Scholar 

  34. Han P, Checkel MD, Fleck BA, Nowicki NL (2007) Burning velocity of methane/diluent mixture with reformer gas addition. Fuel 86(4):585–596

    Google Scholar 

Download references

Acknowledgements

Financial assistance by the Government of India in the form of a fellowship for Senior Research Fellow (SRF) is sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin John Varghese .

Editor information

Editors and Affiliations

Appendix: Experimental Data

Appendix: Experimental Data

The following tables provide the experimental results obtained using the diverging channel method for various compositions. Table 2 shows the detailed composition of the syngas considered. Tables 3, and 4 show the laminar burning velocity and temperature exponents obtained from the experiments, respectively. Table 5 shows the target parameters used for the optimization.

Table 2 Detailed composition of the syngas used in the present work
Table 3 Laminar burning velocity of SG1-SG3 with uncertainties at various equivalence ratio at ambient conditions (300 K, 1 atm)
Table 4 Temperature exponent (α) of different compositions at various equivalence ratios (ϕ) and Pu = 1 atm
Table 5 Target data for optimization

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varghese, R.J., Kumar, S. (2022). Laminar Burning Velocity Measurements at Elevated Pressure and Temperatures and the Challenges in Kinetic Scheme Optimization. In: Gupta, A.K., De, A., Aggarwal, S.K., Kushari, A., Runchal, A.K. (eds) Advances in Energy and Combustion. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2648-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2648-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2647-0

  • Online ISBN: 978-981-16-2648-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation