Biplots for Variants of Correspondence Analysis

  • Chapter
  • First Online:
Modern Quantification Theory

Part of the book series: Behaviormetrics: Quantitative Approaches to Human Behavior ((BQAHB,volume 8))

  • 423 Accesses

Abstract

In the previous chapter, we gave an overview and application of biplots for numerical data. We described the three types of biplots that one may construct—the row isometric, column isometric, and symmetric biplots—and we demonstrated the utility of the first type by analyzing data from 15 countries around the world and their financial and fiscal response to the COVID-19 global pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti, A. (2007). An Introduction to Categorical Data Analysis. New York: Wiley.

    Book  MATH  Google Scholar 

  • Agresti, A. (2013). Categorical Data Analysis (3rd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Beh, E. J. (1997). Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biometrical Journal, 39, 589–613.

    Article  MATH  Google Scholar 

  • Beh, E. J. (1998). A comparative study of scores for correspondence analysis with ordered categories. Biometrical Journal, 40, 413–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Beh, E. J. (2001). Partitioning Pearson’s chi-squared statistic for singly ordered two-way contingency tables. The Australian and New Zealand Journal of Statistics, 43, 327–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Beh, E. J. (2004). Simple correspondence analysis: A bibliographic review. International Statistical Review, 72, 257–284.

    Article  MATH  Google Scholar 

  • Beh, E. J., & Davy, P. J. (1998). Partitioning Pearson’s chi-squared statistic for a completely ordered three-way contingency table. The Australian and New Zealand Journal of Statistics, 40, 465–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Beh, E. J., & Davy, P. J. (1999). Partitioning Pearson’s chi-squared statistic for a partially ordered three-way contingency table. The Australian and New Zealand Journal of Statistics, 41, 233–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Beh, E. J., & Lombardo, R. (2012). A genealogy of correspondence analysis. Australian and New Zealand Journal of Statistics, 54, 137–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Beh, E. J., & Lombardo, R. (2014). Correspondence Analysis: Theory. Wiley, Chichester: Practice and New Strategies.

    MATH  Google Scholar 

  • Beh, E. J., & Lombardo, R. (2020). Five strategies for accommodating overdispersion in simple correspondence analysis. In T. Imaizumi, A. Okado, S. Miyamoto, F. Sakaori, Y. Yamamoto, & M. Vichi (Eds.), Advanced Studies in Classification and Data Science, page 117–129. Singapore: Springer.

    Google Scholar 

  • Beh, E. J., & Lombardo, R. (2019). Multiple and multiway correspondence analysis. WIRE’s Computational Statistics, 11(5):e1464 (11 pages).

    Google Scholar 

  • Beh, E. J., & Lombardo, R. (2020). An Introduction to Correspondence Analysis. Chichester (in press): Wiley.

    Google Scholar 

  • Best, D. J., & Rayner, J. C. W. (1996). Nonparametric analysis for doubly ordered two-way contingency tables. Biometrics, 52, 1153–1156.

    Article  MathSciNet  MATH  Google Scholar 

  • Carlier, A., & Kroonenberg, P. M. (1996). Decomposition and biplots in three-way correspondence analysis. Psychometrika, 61, 355–373.

    Article  MATH  Google Scholar 

  • Carroll, J., Green, P. E., & Schaffer, C. M. (1986). Interpoint distance comparisons in correspondence analysis. Journal of Marketing Research, 23, 271–280.

    Google Scholar 

  • Carroll, J., Green, P. E., & Schaffer, C. M. (1987). Interpoint distance comparisons in correspondence analysis: A clarification. Journal of Marketing Research, 24, 445–450.

    Google Scholar 

  • Carroll, J., Green, P. E., & Schaffer, C. M. (1989). Reply to greenacre’s commentary on the carroll-green-schaffer scaling of two-way correspondence analysis solutions. Journal of Marketing Research, 26, 366–368.

    Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multi-dimensional scaling via an n-way generalisation of “Eckart - Young” decomposition. Psychometrika, 35, 283–319.

    Article  MATH  Google Scholar 

  • D’Ambra, L., & Lauro, N. C. (1989). Non-symmetrical correspondence analysis for three-way contingency table. In R. Coppi & S. Bolasco (Eds.), Multiway Data Analysis (pp. 301–315). Amsterdam: Elsevier.

    Google Scholar 

  • Emerson, P. L. (1968). Numerical construction of orthogonal polynomials from a general recurrence formula. Biometrics, 24, 695–701.

    Article  Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodman, L. A., & Kruskal, W. (1954). Measures of association for cross-classifications. Journal of the American Statistical Association, 49, 732–764.

    MATH  Google Scholar 

  • Gower, J. C., Le Roux, N., & Lubbe, S. (2015). Biplots: quantitative data. WIREs Computational Statistics, 7, 42–62.

    Article  MathSciNet  Google Scholar 

  • Gower, J. C., Le Roux, N., & Lubbe, S. (2016). Biplots: qualititative data. WIREs Computational Statistics, 8, 82–111.

    Article  Google Scholar 

  • Gower, J. C., Lubbe, S., & Le Roux, N. (2011). Understanding Biplots. Wiley.

    Google Scholar 

  • Gray, L., & Williams, J. (1981). Goodman and Kruskal \(\tau _b\) multiple and partial analogs. Proceedings of the Social Statistics Section, 10, 50–62.

    Google Scholar 

  • Greenacre, M. J. (1984). Theory and Application of Correspondence Analysis. London: Academic Press.

    MATH  Google Scholar 

  • Greenacre, M. J. (2007a). Correspondence Analysis in Practice (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Greenacre, M. J. (2007b). Correspondence Analysis in Practice (3rd ed.). Boca Raton, FL: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Greenacre, M. J. (2017). Biplots in Practice (3rd ed.). Barcelona: Fundacion BBVA.

    MATH  Google Scholar 

  • Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16:1 – 84.

    Google Scholar 

  • Kiers, H. A. L. (2000). Towards a standardized notation and terminology in multiway analysis. Chemometrics and Intelligent Laboratory Systems, 14, 105–122.

    Google Scholar 

  • Kim, S.-K., & Grochowalski, J. H. (2019). Exploratory visual inspection of category associations and correlation estimation in multidimensional subspaces. Journal of Classification, 36, 177–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Konig, R. (2010). Changing social categories in a changing society: studying trends with correspondence analysis. Quality & Quantity, 44, 409–425.

    Article  Google Scholar 

  • Kroonenberg, P. M., & Lombardo, R. (1999). Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure. Multivariate Behavioral Research, 34, 367–396.

    Article  Google Scholar 

  • Kroonenberg, P. M. (2008). Applied Multiway Data Analysis. Wiley.

    Google Scholar 

  • Kroonenberg, P. M., & de Leeuw, J. (1980). Principal components analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 69–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Kroonenberg, P. M., ten Berge, J. M. F., Brouwer, P., & Kiers, H. (1989). Gram-schmidt versus bauer-rutishauser in alternating least-squares algorithms for three-mode principal component analysis. Computational Statistics Quarterly, 2, 81–87.

    MATH  Google Scholar 

  • Lancaster, H. O. (1953). A reconciliation of \(\chi ^2\), considered from metrical and enumerative aspects. Sankhya, 13, 1–10.

    MathSciNet  MATH  Google Scholar 

  • Lauro, N. C., & D’Ambra, L. (1984). L’analyse non symmĂ©trique des correspondances. In Diday, E., editor, Data Analysis and Informatics, III, pages 433 – 446. North-Holland.

    Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate Descriptive Statistical Analysis. Wiley.

    Google Scholar 

  • Loisel, S., & Takane, Y. (2016). Partitions of pearson’s chi-square statistic for frequency tables: A comprehensive account. Computational Statistics, 31, 1429–1452.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R. (2011). Three-way association measure decompositions: the Delta index. Journal of Statistical Planning and Inference, 141, 1789–1799.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R., & Beh, E. J. (2010). Simple and multiple correspondence analysis using orthogonal polynomials. Journal of Applied Statistics, 37, 2101–2116.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R., & Beh, E. J. (2016). Variants of simple correspondence analysis. The R Journal, 8(2), 167–184.

    Article  Google Scholar 

  • Lombardo, R., Beh, E. J., & D’Ambra, L. (2007). Non-symmetric correspondence analysis with ordinal variables using orthogonal polynomials. Computational Statistics and Data Analysis, 52, 566–577.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R., Beh, E. J., & Guerrero, L. (2013). Non-symmetric three-way correspondence analysis to analyse text data in a food context. In E. Bretani & M. Carpita (Eds.), Advances on Latent Variables - Methods, Models and Applications, page 6 pages. Italy: Vita e Pensiero Publishers, Milan.

    Google Scholar 

  • Lombardo, R., Beh, E. J., & Guerrero, L. (2018). Analysis of three-way asymmetric association of food concepts in cross-cultural marketing. Quality & Quantity, 53, 2323–2337.

    Article  Google Scholar 

  • Lombardo, R., Beh, E. J., & Kroonenberg, P. M. (2016). Modelling trends in ordered correspondence analysis using orthogonal polynomials. Psychometrika, 81, 325–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R., Beh, E. J., & Kroonenberg, P. M. (2020a). Symmetrical and non-symmetrical variants of three-way correspondence analysis for ordered variables. Statistical Science, page (in press).

    Google Scholar 

  • Lombardo, R., Camminatiello, I., D’Ambra, A., & Beh, E. J. (2020b). Assessing the Italian tax courts system by weighted three-way log-ratio analysis. Socio-Economic Planning Sciences, page (in press).

    Google Scholar 

  • Lombardo, R., Carlier, A., & D’Ambra, L. (1996). Nonsymmetric correspondence analysis for three-way contingency tables. Methodologica, 4, 59–80.

    Google Scholar 

  • Lombardo, R., & Meulman, J. (2010). Multiple correspondence analysis via polynomial transformations of ordered categorical variables. Journal of Classification, 27, 191–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Lombardo, R., Takane, Y., & Beh, E. J. (2020c). Familywise decompositions of Pearson’s chi-squared statistic in the analysis of contingency tables. Advances in Data Analysis and Classification, 14, 629–649.

    Article  MathSciNet  MATH  Google Scholar 

  • Marcotorchino, F. (1985). Utilisation des comparaisons par paires en statistique des contingencies: Partie III. page 39 pages. Report # F - 081, Etude du Centre Scientifique, IBM, France.

    Google Scholar 

  • Nishisato, S. (1980). Analysis of Categorical Data: Dual Scaling and its Applications. Toronto: University of Toronto Press.

    Book  MATH  Google Scholar 

  • Nishisato, S. (2016). Multidimensional joint graphical display of symmetric analysis: Back to the fundamentals. In van der Ark, L., Bolt, D. M., Wen-Chung, W., Douglas, J. A., and Wiberg, M., editors, Quantitative Psychology Research, number 167 in Proceedings in Mathematics & Statistics, pages 291 – 298. Psychometric Society, Springer-Verlag. Heidelberg.

    Google Scholar 

  • Nishisato, S., & Arri, P. S. (1975). Nonlinear programming approach to optimal scaling of partially ordered categories. Psychometrika, 40, 525–548.

    Article  MATH  Google Scholar 

  • Nishisato, S., & Clavel, J. G. (2003). A note on between-set distances in dual scaling and correspondence analysis. Behaviormetrika, 87–98.

    Google Scholar 

  • Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Drapers Memoirs, Biometric Series, Vol 1, London.

    Google Scholar 

  • Rayner, J. C. W., & Best, D. J. (1996). Smooth extensions of pearson’s product moment correlation and Spearman’s rho. Statistics & Probability Letters, 30, 171–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Rayner, J. C. W., & Best, D. J. (2001). A Contingency Table Approach to Nonparametric Testing. Chapman & Hall/CRC.

    Google Scholar 

  • Simonetti, B., Beh, E. J., & D’Ambra, L. (2011). The analysis of dependence for three way contingency tables with ordinal variables: a case study of patient satisfaction. Journal of Applied Statistics, 37, 91–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Tucker, L. R. (1963). Implications of factor analysis of three-way matrices for measurement of change. In C. W. Harris (Ed.), Problems in Measuring Change (pp. 122–137). Madison, Wisconsin: The University of Wisconsin Press.

    Google Scholar 

  • Tucker, L. R. (1964). The extension of factor analysis to three-dimensional matrices. In Frederiksen, N. and Gulliksen, H., editors, Contributions to Mathematical Psychology, pages 109 – 127. Holt,Rinehart & Winston, Canada.

    Google Scholar 

  • Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279–311.

    Article  MathSciNet  Google Scholar 

  • van Herk, H., & van de Velden, M. (2007). Insight into the relative merits of rating and ranking in a cross-national context using three-way correspondence analysis. Food Quality and Preference, 18, 1096–1105.

    Article  Google Scholar 

  • Weller, S. C., & Romney, A. K. (1990). Metric Scaling: Correspondence Analysis. Sage University Paper Series on Quantitative Applications in the Social Sciences 07-075. Newbury Park, CA: Sage.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuhiko Nishisato .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishisato, S., Beh, E.J., Lombardo, R., Clavel, J.G. (2021). Biplots for Variants of Correspondence Analysis. In: Modern Quantification Theory. Behaviormetrics: Quantitative Approaches to Human Behavior, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-16-2470-4_10

Download citation

Publish with us

Policies and ethics

Navigation