Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production

  • Chapter
  • First Online:
Application of Microbes in Environmental and Microbial Biotechnology

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 1298 Accesses

Abstract

Water pollution raises serious environmental and health issues around the world because of the high demand for water for several human activities ranging from domestic usage to industrial applications. Water treatment and recycling are imperative to meet industrial and agricultural water needs. Existing water treatment facilities are either cost-intensive or create a negative environmental impact. To save cost and ensure environmental sustainability, sustainable and cost-effective water treatment techniques are highly needed. Biological wastewater treatment using microalgae offers notable advantages in terms of cost and environmental sustainability. Microalgae are a class of microbes that use contaminants in wastewater to generate algae biomass via photosynthetic processes. Algae biomass, in turn, serves as a substrate for the production of economic products such as bio-fuel, chemicals, fish feed, and other value-added products. Generation of bio-fuel from microalgae is an attractive research area because of the enormous benefits that can be derived from algae. This work discusses the biological wastewater treatment using algae, algae cultivation systems, conversion routes for algae biomass, comparison of algae harvesting methods, algae bio-refinery and products, and sustainability of algae-based bio-fuel. Sustainability can be guaranteed via integration of algae bio-refinery strategy which can produce other value-added products alongside bio-fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275. https://doi.org/10.1016/j.sjbs.2012.04.005

    Article  CAS  Google Scholar 

  • Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38. https://doi.org/10.1016/j.jiec.2019.03.029

    Article  CAS  Google Scholar 

  • Akansha M, Arzoo A, Jyoti D, Arindam K, Vinay S (2018) Microreactor technology for biodiesel production: a review. Biomass Convers Biorefin 8(4)

    Google Scholar 

  • Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Energy Technol 2:216–225

    Google Scholar 

  • Alghurabie IK, Hasan BO, Jackson B, Kosminski A, Ashman PJ (2013) Fluidized bed gasification of Kingston coal and marine microalgae in a spouted bed reactor. Chem Eng Res Des 91:1614–1624

    Article  CAS  Google Scholar 

  • Ali N, Ting Z, Khan YH, Athar MA, Ahmad V, Idrees M (2014) Making biofuels from microalgae – a review of technologies. J Food Sci Technol 1(2):7–14

    Google Scholar 

  • Allison V (2019) Biodiesel from algae oil. https://microbewiki.kenyon.edu/index.php/biodiesel_from_algae_oil

  • Arora N, Laurens LML, Sweeney N, Pruthia V, Poluria KM, Pienkos PT (2019) Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. Algal Res 37:260–268

    Article  Google Scholar 

  • Aytav E, Kocar G (2014) Biodiesel from the perspective of Turkey: past, present and future. Renew Sust Energ Rev 25:335–350

    Article  Google Scholar 

  • Birungi ZS, Chirwa EMN (2015) The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater 299:67–77. https://doi.org/10.1016/j.jhazmat.2015.06.011

    Article  CAS  Google Scholar 

  • Boehman AL (2005) Biodiesel production and processing: foreword. Fuel Process Technol 86(10):1057–1058

    Article  CAS  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  • BP & DuPont (2007) BP–DuPont biofuels fact sheet. Available online at www.bp.com/liveassets/bp_internet/globalbp/STAGING/global_assets/downloads/B/Bio_bp_dupont_fact_sheet_jun06.pdf

  • Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Buxy S, Diltz R, Pullammanappallil P (2013) Biogasification of marine algae Nannochloropsis Oculata. In: Wicks G, Simon J, Zidan R, Brigmon R, Fischman G, Arepalli S, Norris A, McCluer M (eds) . John Wiley & Sons, Inc., Hoboken, NJ, USA

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Chen Y, Wu Y, Hua D, Li C, Harold MP, Wang J, Yang M (2015) Thermochemical conversion of low-lipid microalgae for the production of liquid fuels. RSC Adv:1–28. https://doi.org/10.1039/C4RA13359E

  • Chiaramonti D, Prussi M, Buffi M, Casini D, Maria A (2015) Thermochemical conversion of microalgae: challenges and opportunities. Energy Procedia 75:819–826

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Davis R, Fishman D, Frank ED, Wigmosta MS, Aden A, Coleman AM, Pienkos PT, Skaggs RJ, Venteris ER, Wang MQ (2012) Renewable diesel from algal lipids: an integrated baseline for cost, emissions, and resource potential from a harmonized model. Argonne National Laboratory, National Renewable Energy Laboratory, and Pacific Northwest National Laboratory. U.S. Department of Energy, USA. ANL/ESD/12-4; NREL/TP-5100-55431; PNNL-21437. http://www.nrel.gov/docs/fy12osti/55431.pdf

    Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Rep 11:18–26. https://doi.org/10.1016/j.btre.2016.04.003

    Article  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  CAS  Google Scholar 

  • Dickinson S, Mientus M, Frey D (2016) A review of biodiesel production from microalgae A review of biodiesel production from microalgae. Clean Techn Environ Policy 19(3):637–668. https://doi.org/10.1007/s10098-016-1309-6

    Article  CAS  Google Scholar 

  • Divakaran R, Pillai VN (2002) Flocculation of river silt using chitosan. Water Res 36:2414–2418

    Article  CAS  Google Scholar 

  • DOE (U.S. Department of Energy) (2016) National Algal Biofuels Technology Review. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, USA

    Google Scholar 

  • Dong T, Knoshaug EP, Davis R, Laurens LML, Van Wychen S, Pienkos PT, Nagle N (2016) Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res 19:316–323. https://doi.org/10.1016/j.algal.2015.12.021

    Article  Google Scholar 

  • Elliott LG, Feehan C, LML L, Pienkos PT, Darzins A, Posewitz MC (2012) Establishment of a bioenergy-focused microalgal culture collection. Algal Res 1:102–113

    Article  Google Scholar 

  • FAO (2009) Algae-based biofuels: a review of challenges and opportunities for develo** countries. FAO, Rome, Italy

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Ge S, Champagne P (2016) Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings. Water Res 88:604–612. https://doi.org/10.1016/j.watres.2015.10.054

    Article  CAS  Google Scholar 

  • Giovannoni SJ, DeLong EF, Schmidt TM, Pace NR (1990) Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton. Appl Environ Microbiol 56:2572–2575

    Article  CAS  Google Scholar 

  • Gonzalez LE, Díaz GC, Aranda DAG, Cruz YR, Fortes MM (2015) Biodiesel production based in microalgae: a biorefinery approach. Nat Sci 7:358

    Google Scholar 

  • Gonzalez-Delgado AD, Kafarov V (2011) Microalgae based biorefinery: issues to consider. A review. CT F Cienc Tecnol Futuro 4:5–21

    Article  CAS  Google Scholar 

  • Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Gröschl M (1998) Ultrasonic separation of suspended particles—Part I: Fundamentals. Acta Acust United Acust 84:432–447

    Google Scholar 

  • Hagiwara S, Nabetani H, Nakajima M (2015) Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor. J Phys Conf Ser 596:012017

    Article  Google Scholar 

  • Hallenbeck PC, Grogger M, Mraz M, Veverka D (2016) Solar biofuels production with microalgae. Appl Energy 179:136–145. https://doi.org/10.1016/j.apenergy.2016.06.024

    Article  CAS  Google Scholar 

  • Hossain N, Mahlia TMI, Saidur R (2019) Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuel 12:125. https://doi.org/10.1186/s13068-019-1456-0

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Inglesby AE, Fisher AC (2012) Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ Sci 5:7996–8006

    Article  CAS  Google Scholar 

  • Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. https://doi.org/10.1016/j.chemosphere.2018.10.205

    Article  CAS  Google Scholar 

  • Jegan S, Jegathese P, Farid M (2014) Microalgae as a renewable source of energy: a niche opportunity. 2014(ii)

    Google Scholar 

  • Judge D, Earnshaw D (2003) The European Parliament. Palgrave, Basingstoke, UK

    Google Scholar 

  • Keskin A, Metin G, Duran A, Kadir A (2008) Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renew Energy 33(4):553–557

    Article  CAS  Google Scholar 

  • Laura TC, Todd WL (2014) Parasites in algae mass culture. Front Microbiol 5:258–278

    Google Scholar 

  • Le Moal M, Gascuel-Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, Moatar F, Pannard A, Souchu P, Lefebvre A, Pinay G (2019) Eutrophication: a new wine in an old bottle? Sci Total Environ 651:1–11. https://doi.org/10.1016/j.scitotenv.2018.09.139

    Article  CAS  Google Scholar 

  • Lee DH, Bae CY, Han JI, Park JK (2013) In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Anal Chem 85:8749–8756

    Article  CAS  Google Scholar 

  • Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886

    Article  CAS  Google Scholar 

  • Li X, Yang C, Zeng G, Wu S, Lin Y, Zhou Q, Lou W, Du C, Nie L, Zhong Y (2020) Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res 46:101804. https://doi.org/10.1016/j.algal.2020.101804

    Article  Google Scholar 

  • Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101(19):7314–7322. https://doi.org/10.1016/j.biortech.2010.04.092

    Article  CAS  Google Scholar 

  • Marwa GS, Noura SD, Mohamed SZ, Hesham MS (2019) Algal biofuels: current status and key challenges. Energies 12:1920

    Article  Google Scholar 

  • Masojidek J, Sergejevova M, Rottnerova K, Jirka V, Korecko J, Kopecky J, Zat’kova I, Torzillo G, Stys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21:55–63

    Article  CAS  Google Scholar 

  • Maurizio C, Sonia C, Andrea M (2017) Thermal and fluid dynamic analysis within a batch micro-reactor for biodiesel production from waste vegetable oil. Sustainability 9:2308

    Article  Google Scholar 

  • Medipally SR, Yusoff F, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production 2015

    Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165

    Article  Google Scholar 

  • Milledge JJ, Smith B, Dyer PW, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222

    Article  CAS  Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16(26):21807–21820

    Article  CAS  Google Scholar 

  • Molina Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  Google Scholar 

  • Neves A, Silva T, Reis A, Ramalho L, Eusebio A, Marques IP (2018) Anaerobic digestion of pre-treated microalgae biomass. Chem Eng Trans 64:169–174

    Google Scholar 

  • Nguyen T, Roddick FA, Fan L (2015) Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser. Environ Technol 36:556–565

    Article  CAS  Google Scholar 

  • Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, Lee SY (2019) Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol 272:34–39. https://doi.org/10.1016/j.biortech.2018.09.146

    Article  CAS  Google Scholar 

  • Nzediegwu C, Prasher S, Elsayed E, Dhiman J, Mawof A, Patel R (2020) Biochar applied to soil under wastewater irrigation remained environmentally viable for the second season of potato cultivation. J Environ Manag 254:109822. https://doi.org/10.1016/j.jenvman.2019.109822

    Article  CAS  Google Scholar 

  • Olaganathan R, Ko Qui Shen F, Jun Shen L (2014) Potential and technological advancement of biofuels. Int J Adv Sci Tech Res 4(4) Retrieved from https://commons.erau.edu/publication/833

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30:1031–1046

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB (1955) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105. http://content-calpoly.edu.s3.amazonaws.com/ceenve/1/images/57_photosynthesis_in_sewage_treatment.pdf

    Article  Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation. Sewage Ind Waste 25(6):692–705. www.jstor.org/stable/25032197

    CAS  Google Scholar 

  • Peng L, Fu D, Chu H, Wang Z, Qi H (2019) Biofuel production from microalgae: a review. Environ Chem Lett:0123456789. https://doi.org/10.1007/s10311-019-00939-0

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3:431–440

    Article  CAS  Google Scholar 

  • Prandini JM, da Silva MLB, Mezzari MP, Pirolli M, Michelon W, Soares HM (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresour Technol 202:67–75. https://doi.org/10.1016/j.biortech.2015.11.082

    Article  CAS  Google Scholar 

  • Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59

    Article  CAS  Google Scholar 

  • Rajkumar K, Yaakob Z, Takriff MS (2014) Algal biofuel production. Bioresources 9(1):1603–1633

    Google Scholar 

  • Ramadhas AS, Jayaraj S, Muraleedharan C (2004) Use of vegetable oils as I.C. engine fuels—a review. Renew Energy 29(5):727–242

    Article  CAS  Google Scholar 

  • Rangel-Basto Y, Garcia-Ochoa I, Suárez-Gelvez JH, Zuorro A, Barajas-Solano AF, Urbina-Suarez NA (2018) The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil. Chem Eng Trans 64:331–336

    Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Reith JH (2004) Duurzame co-productie van fijnchemicaliënenenergieuit micro-algen :openbaareindrapport E.E.T. project K99005/398510-1010. Petten, Energieonderzoek Centrum Nederland

    Google Scholar 

  • Robert LG, Patterson TJ (2004) Encyclopedia of toxicology, 3rd edn. Elsevier, Amsterdam, pp 469–475

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program—biodiesel from algae. Report NREL/TP-580–24190. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Sheikh AR, Saad Aldin MA, Mohammad MH, Hugo L (2017) Biological CO2 fixation with production of microalgae in waste water: a review. Renew Sust Energ Rev 76:379–390

    Article  Google Scholar 

  • Singh J, Saxena RC (2015) An introduction to microalgae: diversity and significance. In: Kim S-k (ed) Handbook of marine microalgae. Academic Press, Cambridge, pp 11–24

    Chapter  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16(6):4316–4342. https://doi.org/10.1016/j.rser.2012.03.047

    Article  CAS  Google Scholar 

  • Taher H, Al-zuhair S, Al-marzouqi AH, Haik Y, Farid MM (2011) A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology 2011. https://doi.org/10.4061/2011/468292

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36:4406–4409

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164. NIH Public Access. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Varol A, Ugurlu A (2016) Biogas production from microalgae (spirulina platensis) in a two stage anaerobic system. Waste Biomass Valorization 7:193–200

    Article  CAS  Google Scholar 

  • Wang J, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10:16. https://doi.org/10.1186/s13068-017-0699-y

    Article  CAS  Google Scholar 

  • Ward AJ, Levis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(80):796–799

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11(4):781–812. https://doi.org/10.1016/0734-9750(93)90003-6

    Article  CAS  Google Scholar 

  • Williams PJB, Laurens MLL (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wu Q, Shiraiwa Y, Takeda H, Sheng G, Fu J (1999) Liquid-saturated hydrocarbons resulting from pyrolysis of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Mar Biotechnol 1:346–352

    Article  CAS  Google Scholar 

  • Xu H, Luo Y, Wang P, Zhu J, Yang Z, Liu Z (2019) Removal of thallium in water/wastewater: a review. water research 165:114981. https://doi.org/10.1016/j.watres.2019.114981

    Article  CAS  Google Scholar 

  • Yaşar F (2018) Evaluation and advantages of algae as an energy source. JOTCSA 5(3):1309–1318

    Article  Google Scholar 

  • Zabeti M, Wan MAWD, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90(6):770–777

    Article  CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylumtricornutum under mesophilic and thermophilic conditions. Appl Energy 92:733–738

    Article  CAS  Google Scholar 

  • Zijffers JWF, Janssen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol 10:404–415. https://doi.org/10.1007/s10126-007-9077-2

    Article  CAS  Google Scholar 

  • Znad H, Al Ketife AMD, Judd S, AlMomani F, Vuthaluru HB (2018) Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol Eng 110:1–7. https://doi.org/10.1016/j.ecoleng.2017.10.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akubude, V.C., Ajala, E.O., Nzediegwu, C. (2022). Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Application of Microbes in Environmental and Microbial Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2225-0_13

Download citation

Publish with us

Policies and ethics

Navigation