Physiological and Morphological Color Changes in Teleosts and in Reptiles

  • Chapter
  • First Online:
Pigments, Pigment Cells and Pigment Patterns
  • 1600 Accesses

Abstract

The spectacular changes in the beautiful coloration and conspicuous patterns in animals have commanded the attention of a wide range of people, including hobbyists, scuba divers, and even zoologists since Aristotle’s time. For the animals themselves, these color changes and pattern formations can represent strategies of the utmost importance for the survival of individuals or of species. For instance, cryptic coloration and pattern formation is useful for avoiding attacks by predatory animals. On poikilothermic vertebrates, slow changes in integumental coloration and patterns can be attributed to increases and decreases in the number of chromatophores which possess pigmentary substances and/or high refractive index materials in cytoplasm. These slow changes are generally referred to as the “morphological color changes.” Conversely, the more rapid changes in color and patterns are called “physiological color changes” and are attributed to the motile activities of chromatophores, to the aggregation of chromatosomes in the perikaryon and their dispersion throughout the cytoplasm or to changes in the arrangement of the high refractive index materials in the cytoplasm. This chapter explores the various studies on the morphological and/or physiological color changes in poikilothermic vertebrates, fish, and reptiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrao MS, Castrucci AM, Hadley ME, Hruby VJ (1991) Protein-kinase C mediates MCH signal transduction in teleost, Synbranchus marmoratus, melanocytes. Pigment Cell Res 4:66–70

    Article  CAS  PubMed  Google Scholar 

  • Akimoto K, Takaoka T, Sorimachi K (2000) Development of a simple culture method for the tissues contaminated with microorganisms and application to establishment of a fish cell line. Zool Sci 17:61–63

    Article  CAS  Google Scholar 

  • Alibardi L (2011) Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. Acta Zool 92:187–200

    Article  Google Scholar 

  • Alibardi L (2012) Cytology and localization of chromatophores in the skin of the Tuatara (Sphenodon punctaus). Acta Zool 93:330–337

    Article  Google Scholar 

  • Alibardi L (2013) Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. Acta Zool 94:222–232

    Article  Google Scholar 

  • Alibardi L (2015) Ultrastructural features of skin pigmentation in the lizard Heloderma suspectum with emphasis on xantho-melanophores. Acta Zool 96:154–159

    Article  Google Scholar 

  • Allen WL, Baddeley R, Scott-Samuel NE, Cuthill IC (2013) The evolution and function of pattern diversity in snakes. Behav Ecol 24:1237–1250

    Article  Google Scholar 

  • Andersson RG, Karlsson JO, Grundstrom N (1984) Adrenergic nerves and the alpha 2-adrenoceptor system regulating melanosome aggregation within fish melanophores. Acta Physiol Scand 121:173–179

    Article  CAS  PubMed  Google Scholar 

  • Arnold EN (1997) Interrelationships and evolution of the east Asian grass lizards, Takydromus (Squamata: Lacertidae). Zool J Linn Soc 119:267–296

    Article  Google Scholar 

  • Aspengren S, Skold HN, Quiroga G, Martensson L, Wallin M (2003) Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res 16:59–64

    Article  CAS  PubMed  Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bagnara JT, Matsumoto J (2006) Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Ortonne J (eds) The pigmentary system, physiology and pathophysiology, 2nd edn. Oxford University Press, New York, pp 11–59

    Chapter  Google Scholar 

  • Bagnara JT, Matsumoto J, Ferris W, Frost SK, Turner WA, Tchen TT, Taylor JD (1979) Common origin of pigment cells. Science 203:410–415

    Article  CAS  PubMed  Google Scholar 

  • Bagnara JT, Fernandez PJ, Fujii R (2007) On the blue coloration of vertebrates. Pigment Cell Res 20:14–26

    Article  CAS  PubMed  Google Scholar 

  • Baker BI, Ball JN (1975) Evidence for a dual pituitary control of teleost melanophores. Gen Comp Endocrinol 25:147–152

    Article  CAS  PubMed  Google Scholar 

  • Baker BI, Bird DJ, Buckingham JC (1986) Effects of chronic administration of melanin-concentrating hormone on corticotrophin, melanotrophin, and pigmentation in the trout. Gen Comp Endocrinol 63:62–69

    Article  CAS  PubMed  Google Scholar 

  • Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. J Zool 277:1–14

    Article  Google Scholar 

  • Bateman PW, Fleming PA, Rolek B (2014) Bite me: blue tails as a ‘'risky-decoy’' defense tactic for lizards. Curr Zool 60:333–337

    Article  Google Scholar 

  • Brandley MC, Kuriyama T, Hasegawa M (2014) Snake and bird predation drive the repeated convergent evolution of correlated life history traits and phenotype in the Izu Island Scincid lizard (Plestiodon latiscutatus). PLoS One 9:e92233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brejcha J, Bataller JV, Bosakova Z, Geryk J, Havlikova M, Kleisner K, Marsik P, Font E (2019) Body coloration and mechanisms of colour production in Archelosauria: the case of deirocheline turtles. R Soc Open Sci 6:190319

    Article  PubMed  PubMed Central  Google Scholar 

  • Castrucci AM, Visconti MA, Hadley ME, Hruby VJ, Oshima N, Fujii R (1988) Melanin concentrating hormone (MCH) control of chromatophores. Prog Clin Biol Res 256:547–557

    CAS  PubMed  Google Scholar 

  • Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong CM (2009) Reptile scale paradigm: evo-devo, pattern formation and regeneration. Int J Dev Biol 53:813–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark DR, Hall RJ (1970) Function of the blue tail coloration of the five-lined skink (Eumeces fasciatus). Herpetologica 26:271–274

    Google Scholar 

  • Cooper WE, Greenberg N (1992) Reptilian coloration and behavior. In: Gans C, Crews D (eds) Biology of the reptilia. University of Chicago Press, Chicago, pp 498–422

    Google Scholar 

  • Cooper WE, Vitt LJ (1985) Blue tails and autotomy: enhancement of predation avoidance in juvenile skinks. Z Tierpsychol 70:265–276

    Article  Google Scholar 

  • Cox CL, Rabosky AR, Chippindale PT (2013) Sequence variation in the Mc1r gene for a group of polymorphic snakes. Gene 513:282–286

    Article  CAS  PubMed  Google Scholar 

  • Denton EJ, Nicol JAC (1966) A survey of reflectivity in silvery teleosts. J Mar Biol Assoc UK 46:685–722

    Article  Google Scholar 

  • Enami M (1955) Melanophore-contracting hormone (MCH) of possible hypothalamic origin in the catfish, Parasilurus. Science 121:36–37

    Article  CAS  PubMed  Google Scholar 

  • Euteneuer U, Mcintosh JR (1981) Polarity of some motility-related microtubules. Proc Natl Acad Sci USA 78:372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii R (1961) Demonstration of the adrenergic nature of transmission at the junction between melanophore-concentrating nerve and melanophore in bony fish. J Fac Sci Univ Tokyo Sec IV 9:171–196

    Google Scholar 

  • Fujii R (1969) Chromatophores and pigments. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic Press, New York, pp 307–353

    Google Scholar 

  • Fujii R (1993a) Coloration and chromatophores. In: The physiology of fishes. CRC Press, Boca Raton, pp 535–562

    Google Scholar 

  • Fujii R (1993b) Cytophysiology of fish chromatophores. Int Rev. Cytol 143:191–255

    Article  CAS  Google Scholar 

  • Fujii R (2000) The regulation of motile activity in fish chromatophores. Pigment Cell Res 13:300–319

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Miyashita Y (1976) Receptor mechanisms in fish chromatophores--III. Neurally controlled melanosome aggregation in a siluroid (Parasilurus asotus) is strangely mediated by cholinoceptors. Comp Biochem Physiol C 55:43–49

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Miyashita Y (1979) Photo-electric recording of motile responses of fish leucophores. Annot Zool Jpn 52:87–94

    Google Scholar 

  • Fujii R, Miyashita Y (1980) Action of melanophore-stimulating hormone on dermal and epidermal melanophores of siluroid, Parasilurus asotus. Yale J Biol Med 53:422

    Google Scholar 

  • Fujii R, Miyashita Y (1982) Receptor mechanisms in fish chromatophores--V. MSH disperses melanosomes in both dermal and epidermal melanophores of a catfish (Parasilurus asotus). Comp Biochem Physiol C 71C:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Novales R (1972) Nervous control of melanosome movements in vertebrate melanophores. In: Riley V (ed) Pigmentation: its genesis and biologic control. Appleton-Century-Crofts, New York, pp 315–326

    Google Scholar 

  • Fujii R, Oshima N (1986) Control of chromatophore movements in teleost fishes. Zool Sci 3:13–47

    CAS  Google Scholar 

  • Fujii R, Oshima N (1994) Factors influencing motile activities of fish chromatophores. In: Gilles R (ed) Advances in comparative and environmental physiology. Springer, Berlin, pp 1–54

    Google Scholar 

  • Fujii R, Taguchi S (1969) The response of fish melanophores to some melanin-aggregating and dispersing agents in potassium-rich medium. Annot Zool Jpn 42:176–182

    CAS  Google Scholar 

  • Fujii R, Miyashita Y, Fujii Y (1982) Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J Neural Transm 54:29–39

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Hayashi H, Toyohara J, Nishi H (1991a) Analysis of the light reflection from motile iridophores of the dark sleeper, Odontobutis obscura obscura. Zool Sci 8:461–470

    Google Scholar 

  • Fujii R, Wakatabi H, Oshima N (1991b) Inositol 1,4,5-triphosphate signals the motile response of fish chromatophores I. Aggregation of pigment in the tilapia melanophore. J Exp Zool 259:9–17

    Article  CAS  Google Scholar 

  • Fujii R, Tanaka Y, Hayashi H (1993) Endothelin-1 causes aggregation of pigment in teleostean melanophores. Zool Sci 10:763–772

    CAS  Google Scholar 

  • Fujishige A, Moriwake T, Ono A, Ishii Y, Tsuchiya T (2000) Control of melanosome movement in intact and cultured melanophores in the bitterling, Acheilognathus lanceolatus. Comp Biochem Physiol A 127:167–175

    Article  CAS  Google Scholar 

  • Fujita T, Fujii R (1997) Endothelins disperse light-scattering organelles in leucophores of the Medaka, Oryzias latipes. Zool Sci 14:559–569

    Article  CAS  Google Scholar 

  • Goda M, Fujii R (1995) Blue chromatophores in two species of callionymid fish. Zool Sci 12:811–813

    Article  Google Scholar 

  • Goda M, Ohata M, Ikoma H, Fujiyoshi Y, Sugimoto M, Fujii R (2011) Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema. Pigment Cell Melanoma Res 24:614–617

    Article  CAS  PubMed  Google Scholar 

  • Goda M, Fujiyoshi Y, Sugimoto M, Fujii R (2013) Novel dichromatic chromatophores in the integument of the mandarin fish Synchiropus splendidus. Biol Bull 224:14–17

    Article  PubMed  Google Scholar 

  • Greenhill ER, Rocco A, Vibert L, Nikaido M, Kelsh RN (2011) An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet 7:e1002265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundstrom N, Karlsson JO, Andersson RG (1985) The control of granule movement in fish melanophores. Acta Physiol Scand 125:415–421

    Article  CAS  PubMed  Google Scholar 

  • Hawlena D, Boochnik R, Abramsky Z, Bouskila A (2006) Blue tail and striped body: why do lizards change their infant costume when growing up? Behav Ecol 17:889–896

    Article  Google Scholar 

  • Hayashi H, Fujii R (1993) Muscarinic cholinoceptors that mediate pigment aggregation are present in the melanophores of cyprinids (Zacco spp). Pigment Cell Res 6:37–44

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fujii R (1994) Pharmacological profiles of the subtypes of muscarinic cholinoceptors that mediate aggregation of pigment in the melanophores of two species of catfish. Pigment Cell Res 7:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fujii R (2001) Possible involvement of nitric oxide in signaling pigment dispersion in teleostean melanophores. Zool Sci 18:1207–1215

    Article  CAS  Google Scholar 

  • Hayashi H, Nakamura S, Fujii R (1996) The endothelin receptors that mediate aggregation of pigment in fish melanophores. Comp Biochem Physiol B 115:143–152

    Article  Google Scholar 

  • Huxley A (1968) A theoretical treatment of the reflexion of light by multilayer structures. J Exp Biol 48:227–245

    Article  Google Scholar 

  • Iga T (1979) Alpha adrenoceptors: pigment aggregation in Oryzias leucophores. Mem Fac Lit Sci Shimane Univ 13:87–95

    Google Scholar 

  • Iga T (1983) Electric stimulation experiments on leucophores of a freshwater teleost, Oryzias latipes. Comp Biochem Physiol C 74:103–108

    Article  CAS  PubMed  Google Scholar 

  • Iga T, Matsuno A (1986) Motile iridophores of a freshwater goby, Odontobutis obscura. Cell Tissue Res 244:165–171

    Article  Google Scholar 

  • Iga T, Takabatake I (1982) Action of melanophore-stimulating hormone on melanophores of the cyprinid fish Zacco temmincki. Comp Biochem Physiol C 73:51–55

    Article  CAS  PubMed  Google Scholar 

  • Iga T, Yamada K, Iwakiri M (1977) Adrenergic receptors mediating pigment dispersion in leucophores of a teleost, Oryzias latipes. Mem Fac Lit Sci Shimane Univ Nat Sci 11:63–72

    CAS  Google Scholar 

  • Imokawa G, Yada Y, Miyagishi M (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267:24675–24,680

    Article  CAS  PubMed  Google Scholar 

  • Irizarry KJ, Bryden RL (2016) In silico analysis of gene expression network components underlying pigmentation phenotypes in the python identified evolutionarily conserved clusters of transcription factor binding sites. Adv Bioinformatics 2016:1286510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwanishi S, Zaitsu S, Shibata H, Nitasaka E (2018) An albino mutant of the Japanese rat snake (Elaphe climacophora) carries a nonsense mutation in the tyrosinase gene. Genes Genet Syst 93:163–167

    Article  CAS  PubMed  Google Scholar 

  • Iwata K, Takahashi T, Okada Y (1981) Nervous control in chromatophores of the medaka. In: Seiji M (ed) Pigment cell 1981: phenotypic expression in pigment cells. University Tokyo Press, Tokyo, pp 369–372

    Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1986) Control of chromatophore movements in dermal chromatic units of blue damselfish--II. The motile iridophore. Comp Biochem Physiol C 83:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1987) Mechanism of light reflection in blue damselfish motile iridophore. Zool Sci 4:243–257

    Google Scholar 

  • Kawaguti S (1965) Electron microscopy on iridophores in the scale of the blue wrasse. Proc Jpn Acad 41:610–613

    Article  Google Scholar 

  • Kawaguti S, Kamishima Y (1966) Electron microscopy on the blue black of a clupeoid fish, Harengula zunasi. Proc Jpn Acad 42:389–393

    Article  Google Scholar 

  • Kawai I (1989) Light sensitive response of the scale xanthophores of a teleost. Oryzias latipes. Med. Biol (Tokyo) 118:93–97

    Google Scholar 

  • Kawauchi H (2006) Functions of melanin-concentrating hormone in fish. J Exp Zool 305:751–760

    Article  CAS  Google Scholar 

  • Kawauchi H, Kawazoe I, Tsubokawa M, Kishida M, Baker BI (1983) Characterization of melanin-concentrating hormone in chum salmon pituitaries. Nature 305:321–323

    Article  CAS  PubMed  Google Scholar 

  • Kelsh RN (2004) Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17:326–336

    Article  CAS  PubMed  Google Scholar 

  • Kelsh RN, Harris ML, Colanesi S, Erickson CA (2009) Stripes and belly-spots -- a review of pigment cell morphogenesis in vertebrates. Semin Cell Dev Biol 20:90–104

    Article  CAS  PubMed  Google Scholar 

  • Kitta K, Makino M, Oshima N, Bern HA (1993) Effects of prolactins on the chromatophores of the tilapia, Oreochromis niloticus. Gen Comp Endocrinol 92:355–365

    Article  CAS  PubMed  Google Scholar 

  • Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A, Mullen SP, Protas M, Rosenblum EB, Schneider CJ, Hoekstra HE (2012) Unraveling the thread of nature’'s tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res 25:411–433

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa T, Fujii R (1984) Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in Tilapia. Comp Biochem Physiol C 78:263–236

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama T, Hasegawa M (2017) Embryonic developmental process governing the conspicuousness of body stripes and blue tail coloration in the lizard Plestiodon latiscutatus. Evol Dev 19:29–39

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama T, Miyaji K, Sugimoto M, Hasegawa M (2006) Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration. Zool Sci 23:793–799

    Article  Google Scholar 

  • Kuriyama T, Misawa H, Miyaji K, Sugimoto M, Hasegawa M (2013) Pigment cell mechanisms underlying dorsal color-pattern polymorphism in the Japanese four-lined snake. J Morphol 274:1353–1364

    Article  PubMed  Google Scholar 

  • Kuriyama T, Morimoto G, Miyaji K, Hasegawa M (2016a) Cellular basis of anti-predator adaptation in a lizard with autotomizable blue tail against specific predators with different colour vision. J Zool 300:89–98

    Article  Google Scholar 

  • Kuriyama T, Okamoto T, Miyaji K, Hasegawa M (2016b) Iridophore- and xanthophore-deficient melanistic color variant of the lizard Plestiodon latiscutatus. Herpetologica 72:189–195

    Article  Google Scholar 

  • Kuriyama T, Esashi J, Hasegawa M (2017) Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards. Zoology (Jena) 121:83–90

    Article  Google Scholar 

  • Kuriyama T, Murakami A, Brandley M, Hasegawa M (2020) Blue, black, and stripes: evolution and development of color production and pattern formation in lizards and snakes. Front Ecol Evol 8:232

    Article  Google Scholar 

  • Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin; the pineal gland factor that lightens. J Am Chem Soc 80:2587

    Article  CAS  Google Scholar 

  • Lin SM, Chen CA, Lue KY (2002) Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Mol Phylogenet Evol 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Logan DW, Burn SF, Jackson IJ (2006) Regulation of pigmentation in zebrafish melanophores. Pigment Cell Res 19:206–213

    Article  CAS  PubMed  Google Scholar 

  • Luby-Phelps K, Porter KR (1982) The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell 29:441–450

    Article  CAS  PubMed  Google Scholar 

  • Lythgoe JN, Shand J (1982) Changes in spectral reflexions from the iridophores of the neon tetra. J Physiol 325:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HE (2010) Convergence in pigmentation at multiple levels: mutations, genes and function. Philos Trans R Soc Lond B Biol Sci 365:2439–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martensson LG, Andersson RG (2000) Is Ca2+ the second messenger in the response to melatonin in cuckoo wrasse melanophores? Life Sci 66:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Masagaki A, Fujii R (1999) Differential action of melatonin on melanophores of the threeline pencilfish, Nannostomus trifasciatus. Zool Sci 16:35–42

    Article  CAS  Google Scholar 

  • Matsumoto J, Watanabe Y, Obika M, Hadley M (1978) Mechanisms controlling pigment movements with in swordtail (**phophorus helleri) erythrophores in primary culture. Comp Biochem Physiol A 61:509–517

    Article  Google Scholar 

  • Mckinnon JS, Pierotti ME (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125

    Article  PubMed  Google Scholar 

  • Mcniven MA, Porter KR (1986) Microtubule polarity confers direction to pigment transport in chromatophores. J Cell Biol 103:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Kumazawa T, Fujii R (1984) Receptor mechanisms in fish chromatophores--VI. Adenosine receptors mediate pigment dispersion in guppy and catfish melanophores. Comp Biochem Physiol C 77:205–210

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa K, Kobayashi Y, Sunuma T, Asahida T, Saito Y, Takahashi A (2011) Inhibiting roles of melanin-concentrating hormone for skin pigment dispersion in barfin flounder, Verasper moseri. Gen Comp Endocrinol 171:75–81

    Article  CAS  PubMed  Google Scholar 

  • Mori A, Tanaka K, Moriguchi H, Hasegawa M (2005) Color variation in Elaphe quadrivirgata throughout Japan. Jpn J Herpetol 2005:22–38

    Google Scholar 

  • Morishita F (1987) Responses of the melanophores of the medaka, Oryzias latipes, to adrenergic drugs: evidence for involvement of alpha 2 adrenergic receptors mediating melanin aggregation. Comp Biochem Physiol C 88:69–74

    Article  CAS  PubMed  Google Scholar 

  • Morishita F, Yamada K (1989) Subtype of alpha adrenoceptors mediating leucosome aggregation in medaka leucophore. J Sci Hiroshima Univ Ser B Div 1(33):99–112

    Google Scholar 

  • Morrison RL (1995) A transmission electron microscopic (TEM) method for determining structural colors reflected by lizard iridophores. Pigment Cell Res 8:28–36

    Article  CAS  PubMed  Google Scholar 

  • Morrison RL, Rand MS, Frost-Mason SK (1995) Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995:397–408

    Article  Google Scholar 

  • Murakami A, Hasegawa M, Kuriyama T (2014) Identification of juvenile color morphs for evaluating heredity model of stripe/non-stripe pattern polymorphism in Japanese four-lined snake Elaphe quadrivirgata. Curr Herpetol 33:68–74

    Article  Google Scholar 

  • Murakami A, Hasegawa M, Kuriyama T (2016) Pigment cell mechanism of postembryonic stripe pattern formation in the Japanese four-lined snake. J Morphol 277:196–203

    Article  PubMed  Google Scholar 

  • Murakami A, Hasegawa M, Kuriyama T (2018) Developmental mechanisms of longitudinal stripes in the Japanese four-lined snake. J Morphol 279:27–36

    Article  PubMed  Google Scholar 

  • Murali G, Merilaita S, Kodandaramaiah U (2018) Grab my tail: evolution of dazzle stripes and colourful tails in lizards. J Evol Biol 31:1675–1688

    Article  PubMed  Google Scholar 

  • Murata N, Fujii R (2000) Pigment-aggregating action of endothelins on medaka xanthophores. Zool Sci 17:853–862

    Article  CAS  Google Scholar 

  • Murphy DB, Tilney LG (1974) The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol 61:757–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray JD, Myerscough MR (1991) Pigmentation pattern formation on snakes. J Theor Biol 149:339–360

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Oshima N, Fujii R (1986) A comparative-study of melanin-concentrating hormone (MCH) action on teleost melanophores. Biol Bull 171:360–370

    Article  CAS  Google Scholar 

  • Nagaishi H, Oshima N (1989) Neural control of motile activity of light-sensitive iridophores in the neon tetra. Pigment Cell Res 2:485–492

    Article  CAS  PubMed  Google Scholar 

  • Needham A (1974) Significance of zoochromis. Springer, Berlin

    Book  Google Scholar 

  • Negishi S, Obika M (1980) The effects of melanophore-stimulating hormone and cyclic nucleotides on teleost fish chromatophores. Gen Comp Endocrinol 42:471–476

    Article  CAS  PubMed  Google Scholar 

  • Nilsson H, Rutberg M, Wallin M (1996) Localization of kinesin and cytoplasmic dynein in cultured melanophores from Atlantic cod, Gadus morhua. Cell Motil Cytoskeleton 33:183–196

    Article  CAS  PubMed  Google Scholar 

  • Nishi H, Fujii R (1992) Novel receptors for melatonin that mediate pigment dispersion are present in some melanophores of the pencil fish (Nannostomus). Comp Biochem Physiol C 103:263–268

    Article  Google Scholar 

  • Obika M (1976) An analysis of the mechanism of pigment migration in fish chromatophores. In: Riley V (ed) Pigment cell, Unique properties of melanocytes, vol 3. Karger, Basel, pp 254–265

    Google Scholar 

  • Obika M (1986) Intracellular transport of pigment granules in fish chromatophores. Zool Sci 3:1–11

    CAS  Google Scholar 

  • Obika M (1988) Ultrastructure and physiological-response of leucophores of the medaka Oryzias latipes. Zool Sci 5:311–321

    Google Scholar 

  • Obika M, Turner WA, Negishi S, Menter DG, Tchen TT, Taylor JD (1978) The effects of lumicolchicine, colchicine and vinblastine on pigment migration in fish chromatophores. J Exp Zool 205:95–110

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1974) Movement of pigment granules within melanophores of an isolated fish scale. Biol Bull 146:258–266

    Article  CAS  Google Scholar 

  • Ohta T (1983) Melanosome dispersion in direct response to light in melanophores of Phodeus ocellatus fry. Annot Zool Jpn 56:155–162

    Google Scholar 

  • Ohta T, Muramatsu K (1988) Spectral sensitivity of melanophores in the primary color response of the rose bittering, Rhodeus ocellatus ocellatus. Jpn J Ichthyol 34:483–487

    Article  Google Scholar 

  • Ohta T, Sugimoto S (1980) Leucosome dispersion under light in Medaka leucophores. Jpn J Ichthyol 27:72–76

    Google Scholar 

  • Olsson M, Stuart-Fox D, Ballen C (2013) Genetics and evolution of colour patterns in reptiles. Semin Cell Dev Biol 24:529–541

    Article  PubMed  Google Scholar 

  • Ortega J, Lopez P, Martin J (2014) Conspicuous blue tails, dorsal pattern morphs and escape behaviour in hatchling Iberian wall lizards (Podarcis hispanicus). Biol J Linn Soc 113:1094–1106

    Article  Google Scholar 

  • Oshima N, Fujii R (1984) A precision photoelectric method for recording chromatophore responses in vitro. Zool Sci 1:545–552

    Google Scholar 

  • Oshima N, Fujii R (1985) Calcium requirement for MSH action on non-melanophoral chromatophores of some fish. Zool Sci 2:127–129

    CAS  Google Scholar 

  • Oshima N, Fujii R (1987) Motile mechanism of blue damselfish (Chrysiptera cyanea) iridophores. Cell Motil Cytoskeleton 8:85–90

    Article  Google Scholar 

  • Oshima N, Goto M (2000) Prolactin signaling in erythrophores and xanthophores of teleost fish. Pigment Cell Res 13(Suppl 8):35–40

    Article  PubMed  Google Scholar 

  • Oshima N, Yokozeki A (1999) Direct control of pigment aggregation and dispersion in tilapia erythrophores by light. Zool Sci 16:51–54

    Article  Google Scholar 

  • Oshima N, Kasukawa H, Fujii R, Wilkes BC, Hruby VJ, Hadley ME (1986a) Action of melanin-concentrating hormone (MCH) on teleost chromatophores. Gen Comp Endocrinol 64:381–388

    Article  CAS  PubMed  Google Scholar 

  • Oshima N, Yamaji N, Fujii R (1986b) Adenosine receptors mediate pigment dispersion in leucophores of the medaka, Oryzias latipes. Comp Biochem Physiol C 85:245–248

    Article  CAS  PubMed  Google Scholar 

  • Oshima N, Suzuki M, Yamaji N, Fujii R (1988) Pigment aggregation is triggered by an increase in free calcium ions within fish chromatophores. Comp Biochem Physiol A 91:27–32

    Article  Google Scholar 

  • Oshima N, Kasukawa H, Fujii R (1989) Control of chromatophore movements in the blue-green damselfish, Chromis viridis. Comp Biochem Physiol C 93:239–245

    Article  Google Scholar 

  • Oshima N, Makino M, Iwamuro S, Bern HA (1996) Pigment dispersion by prolactin in cultured xanthophores and erythrophores of some fish species. J Exp Zool 275:45–52

    Article  CAS  Google Scholar 

  • Oshima N, Nakata E, Ohta M, Kamagata S (1998) Light-induced pigment aggregation in xanthophores of the medaka, Oryzias latipes. Pigment Cell Res 11:362–367

    Article  CAS  PubMed  Google Scholar 

  • Oshima N, Nakamaru N, Araki S, Sugimoto M (2001) Comparative analyses of the pigment-aggregating and -dispersing actions of MCH on fish chromatophores. Comp Biochem Physiol C 129:75–84

    CAS  Google Scholar 

  • Oster GF, Murray JD (1989) Pattern formation models and developmental constraints. J Exp Zool 251:186–202

    Article  CAS  PubMed  Google Scholar 

  • Ota H, Honda M, Chen S-L, Hikida T, Panha S, Oh H-S, Matsui A (2002) Phylogenetic relationships, taxonomy, character evolution and biogeography of the lacertid lizards of the genus Takydromus (Reptilia: Squamata): a molecular perspective. Biol J Linn Soc 76:493–509

    Article  Google Scholar 

  • Ovais M, Srivastava SK, Sumoona S, Mubashshir M (2015) Evidence for the presence of novel beta-melatonin receptors along with classical alpha-melatonin receptors in the fish Rasbora daniconius (Ham.). J Recept Signal Transduct Res 35:238–248

    Article  CAS  PubMed  Google Scholar 

  • Parichy DM (2006) Evolution of danio pigment pattern development. Heredity (Edinb) 97:200–210

    Article  CAS  Google Scholar 

  • Parichy DM, Spiewak JE (2015) Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution. Pigment Cell Melanoma Res 28:31–50

    Article  CAS  PubMed  Google Scholar 

  • Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN (2018) A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 14:e1007402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  • Pickford G, Atz JW (1957) The physiology of the pituitary gland of fishes. New York Zoological Society, New York

    Google Scholar 

  • Reed BL (1968) The control of circadian pigment changes in the pencil fish: a proposed role for melatonin. Life Sci 7:961–973

    Article  CAS  PubMed  Google Scholar 

  • Richmond JQ (2006) Evolutionary basis of parallelism in North American scincid lizards. Evol Dev 8:477–490

    Article  PubMed  Google Scholar 

  • Richmond JQ, Reeder TW (2002) Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae). Evolution 56:1498–1513

    CAS  PubMed  Google Scholar 

  • Rodionov VI, Gyoeva FK, Gelfand VI (1991) Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc Natl Acad Sci USA 88:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionov VI, Hope AJ, Svitkina TM, Borisy GG (1998) Functional coordination of microtubule-based and actin-based motility in melanophores. Curr Biol 8:165–168

    Article  CAS  PubMed  Google Scholar 

  • Rodionov V, Yi J, Kashina A, Oladipo A, Gross SP (2003) Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels. Curr Biol 13:1837–1847

    Article  CAS  PubMed  Google Scholar 

  • Rohrlich ST (1974) Fine structural demonstration of ordered arrays of cytoplasmic filaments in vertebrate iridophores. A comparative survey. J Cell Biol 62:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrlich ST, Porter KR (1972) Fine structural observations relating to the production of color by the iridophores of a lizard Anolis carolinensis. J Cell Biol 53:38–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum EB, Hoekstra HE, Nachman MW (2004) Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution 58:1794–1808

    CAS  PubMed  Google Scholar 

  • Roy A, Pittman M, Saitta ET, Kaye TG, Xu X (2020) Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol Rev. Camb Philos Soc. 95:22–50

    Article  Google Scholar 

  • Saenko SV, Teyssier J, Van Der Marel D, Milinkovitch MC (2013) Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol 11:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saenko SV, Lamichhaney S, Martinez Barrio A, Rafati N, Andersson L, Milinkovitch MC (2015) Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene. Sci Rep 5:17118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage M (1970) Control of prolactin release and its role in color change in the teleost Gillichthys mirabilis. J Exp Zool 173:121–127

    Article  CAS  PubMed  Google Scholar 

  • San-Jose LM, Roulin A (2017) Genomics of coloration in natural animal populations. Philos Trans R Soc Lond B Biol Sci 372(1724):20160337372

    Article  Google Scholar 

  • Schartl M, Larue L, Goda M, Bosenberg MW, Hashimoto H, Kelsh RN (2016) What is a vertebrate pigment cell? Pigment Cell Melanoma Res 29:8–14

    Article  PubMed  Google Scholar 

  • Schliwa M (1984) Mechanisms of intracellular organelle transport. In: Shay JW (ed) Cell muscle motility. Plenum, New York, pp 1–80

    Google Scholar 

  • Schliwa M, Euteneuer U (1978) A microtuble-independent component may be involved in granule transport in pigment cells. Nature 273:556–558

    Article  CAS  PubMed  Google Scholar 

  • Schliwa M, Weber K, Porter KR (1981) Localization and organization of actin in melanophores. J Cell Biol 89:267–275

    Article  CAS  PubMed  Google Scholar 

  • Schlüter U (2003) Die langschwanzeidechsen der gattung Takydromus. Pflege, zucht und lebensweise. Kirschner & Seufer Verlag, Keltern-Weiler

    Google Scholar 

  • Skold HN, Norstrom E, Wallin M (2002) Regulatory control of both microtubule- and actin-dependent fish melanosome movement. Pigment Cell Res 15:357–366

    Article  CAS  PubMed  Google Scholar 

  • Skold HN, Amundsen T, Svensson PA, Mayer I, Bjelvenmark J, Forsgren E (2008) Hormonal regulation of female nuptial coloration in a fish. Horm Behav 54:549–556

    Article  PubMed  CAS  Google Scholar 

  • Stevens M, Merilaita S (2011) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stuart-Fox D, Moussalli A, Whiting MJ (2008) Predator-specific camouflage in chameleons. Biol Lett 4:326–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto M (1993) Morphological color changes in the medaka, Oryzias latipes, after prolonged background adaptation—I. Changes in the population and morphology of melanophores. Comp Biochem Physiol A 104:513–518

    Article  Google Scholar 

  • Sugimoto M (2002) Morphological color changes in fish: regulation of pigment cell density and morphology. Microsc Res Tech 58:496–503

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto M, Oshima N, Fujii R (1985) Mechanisms controlling motile responses of amelanotic melanophores in the medaka, Oryzias latipes. Zool Sci 2:317–322

    CAS  Google Scholar 

  • Sugimoto M, Uchida N, Hatayama M (2000) Apoptosis in skin pigment cells of the medaka, Oryzias latipes (Teleostei), during long-term chromatic adaptation: the role of sympathetic innervation. Cell Tissue Res 301:205–216

    Article  CAS  PubMed  Google Scholar 

  • Szydlowski P, Madej JP, Mazurkiewicz-Kania M (2017) Histology and ultrastructure of the integumental chromatophores in tokay gecko (Gekko gecko) (Linnaeus, 1758) skin. Zoomorphology 136:233–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Teyssier J, Saenko SV, Van Der Marel D, Milinkovitch MC (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6:6368

    Article  CAS  PubMed  Google Scholar 

  • Thaler CD, Haimo LT (1990) Regulation of organelle transport in melanophores by calcineurin. J Cell Biol 111:1939–1948

    Article  CAS  PubMed  Google Scholar 

  • Thaler CD, Haimo LT (1992) Control of organelle transport in melanophores: regulation of Ca2+ and cAMP levels. Cell Motil Cytoskeleton 22:175–184

    Article  CAS  PubMed  Google Scholar 

  • Uchida-Oka N, Sugimoto M (2001) Norepinephrine induces apoptosis in skin melanophores by attenuating cAMP-PKA signals via alpha2-adrenoceptors in the medaka, Oryzias latipes. Pigment Cell Res 14:356–361

    Article  CAS  PubMed  Google Scholar 

  • Van Der Salm AL, Spanings FA, Gresnigt R, Bonga SE, Flik G (2005) Background adaptation and water acidification affect pigmentation and stress physiology of tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 144:51–59

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu Y (1978) Light sensitive fish melanophores in culture. J Exp Zool 204:299–304

    Article  Google Scholar 

  • Wakamatsu Y, Kawamura S, Yoshizawa T (1980) Light-induced pigment aggregation in cultured fish melanophores: spectral sensitivity and inhibitory effects of theophylline and cyclic adenosine-3′’',5′’'-monophosphate. J Cell Sci 41:65–74

    Article  CAS  PubMed  Google Scholar 

  • Watson CM, Roelke CE, Pasichnyk PN, Cox CL (2012) The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models. Zoology (Jena) 115:339–344

    Article  Google Scholar 

  • Wucherer MF, Michiels NK (2012) A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS One 7:e37913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K (1980) Actions of sympathomimetic amines on leucophores in isolated scales of a teleost fish with special reference to beta-adrenoceptors mediating pigment dispersion. J Sci Hiroshima Univ Ser B Div 1(28):95–114

    Google Scholar 

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

  • Ziegler I (2003) The pteridine pathway in zebrafish: regulation and specification during the determination of neural crest cell-fate. Pigment Cell Res 16:172–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Miyaji, A. Murakami, M. Ohata, and M. Sugimoto for their observations and discussions about chromatophores and to M.C. Brandley, M. Hasegawa, G. Morimoto for their valuable discussions about the ecology and evolution of reptile coloration. We also thank the members of the Laboratory of Geographical Ecology of Toho University for their field assistance. It is a pleasure to thank for Risa Goda for her assistance in taking photographs of fish, and Isao Ohta, Hamamatsu University School of Medicine, for his unfailing assistance in taking electron micrographs. This research was partially supported by the Japan Society for the Promotion of Science to M. Hasegawa (19H03307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Goda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goda, M., Kuriyama, T. (2021). Physiological and Morphological Color Changes in Teleosts and in Reptiles. In: Hashimoto, H., Goda, M., Futahashi, R., Kelsh, R., Akiyama, T. (eds) Pigments, Pigment Cells and Pigment Patterns. Springer, Singapore. https://doi.org/10.1007/978-981-16-1490-3_13

Download citation

Publish with us

Policies and ethics

Navigation