Low Velocity Impact Testing on Laminated Composites

  • Chapter
  • First Online:
Impact Studies of Composite Materials

Part of the book series: Composites Science and Technology ((CST))

  • 830 Accesses

Abstract

The response of composite laminates from transverse impact loading is known to vary with the speed of impact. In Low Velocity Impact (LVI) conditions, boundary effects usually dominate since the impact duration is longer between the laminate and the impactor. The global damage modes in LVI is also distinctly unique, whereby large deflections often occur, which depend highly on the shear properties (both in-plane and interlaminar) of the material. Therefore, characterisation of impact resistance and damage on LVI conditions are crucial before material selection for structural design. In this chapter, the LVI behaviour of composite laminates under LVI loading is investigated. The type of damage under LVI is also highlighted and discussed to obtain a detailed understanding of the impactor mass and velocity effects. The extent of delamination is studied using ultrasonic C-scan and radiograph images. Finally, where possible, fractographic studies have been undertaken to understand the influence of the interlaminar toughness on the impact resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrate S (1991) Impact on laminated composite materials. Appl Mech Rev 44(4):155–190

    Article  Google Scholar 

  • Abrate S (1991) Impact on laminated composite materials: recent advances. Appl Mech Rev 47(11):517–544

    Article  Google Scholar 

  • Abrate S (1998) Imapct on composite structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • AGY (2006) High strength glass fibres—technical datasheet. AGY

    Google Scholar 

  • American Standard for Testing Materials (ASTM) (2017) ASTM D7137/D7137M–17, Standard test method for compressive residual strength properties of damaged polymer matrix composite plates. ASTM International, West Conshohocken

    Google Scholar 

  • Argawal S, Singh KK, Sarkar PK (2014) Impact damage on fibre reinforced polymer matrix composite—a review. J Compos Mater 48(3):313–332

    Google Scholar 

  • Arikan V, Sayman O (2015) Comparative study on repeated impact response of E-glass fibre reinforced polypropylene and epoxy matrix composites. Compos B Eng 83:1–6

    Article  CAS  Google Scholar 

  • Bandaru AK, Ahmad S, Bhatnagar N (2001) Impact behaviour of Aramid fibre/glass fibre hybrid composite: evaluation of a four-layer hybrid composites. J Mater Sci 36(9):2359–2367

    Article  Google Scholar 

  • Berthelot JM (2003) Transverse cracking and delamination in cross-ply glass-fibre and carbon-fibre reinforced plastic laminates: static and fatigue loading. Appl Mech Rev 56(2):111–147

    Article  Google Scholar 

  • Bouvet C, Castanie B, Bizeul M, Barrau JJ (2009) Low velocity impact modelling in laminate composite panels with discrete interface elements. Int J Solids Struct 46(14–15):2809–2821

    Article  Google Scholar 

  • Cantwell WJ, Morton J (1985) Detection of impact damage in CFRP laminates. Compos Struct 3(3–4):241–257

    Article  Google Scholar 

  • Cantwell WJ, Morton J (1989) Comparison of the low and high velocity impact. Composites 20(6):545–551

    Article  CAS  Google Scholar 

  • Cantwell WJ, Morton J (1989) Geometrical effects in the low velocity impact response of CFRP. Compos Struct 12(1):39–59

    Article  Google Scholar 

  • Cantwell WJ, Morton J (1991) The impact resistance of composite materials: a review. Composites 22(5):347–362

    Article  CAS  Google Scholar 

  • Caprino G, Lopresto V (2001) On the penetration energy for fibre-reinforced plastics under low-velocity impact conditions. Compos Sci Technol 61(1):65–73

    Article  CAS  Google Scholar 

  • Cowie JM (1991) Polymers: chemistry and physics of modern materials. Blackie and Son Limited, London

    Google Scholar 

  • Crupi V, Epasto G, Guglielmino E (2016) Internal damage investigation of composites subjected to low-velocity impact. Exp Tech 40(2):555–568

    Article  Google Scholar 

  • Cuniff PM (1999a) Dimensionless parameters for optimization of textile-based body armor systems. In: International symposium of ballistics. San Antonio, Texas.

    Google Scholar 

  • Cuniff, PM (1999b) Dimensionless parameters for optimization of textile-based body armour systems. In: 18th international symposium of ballistics. San Antonio, Texas

    Google Scholar 

  • Davies GA, Olsson R (2004) Impact on composite structures. Aeronaut J 108(1089):541–563

    Article  Google Scholar 

  • Davies GA, Robinson P (1992) Predicting failure by debonding/delamination. In: AGARD 74th structures and materials meeting. debonding/delamination of composites. Neuilly sur Seine, France

    Google Scholar 

  • de Freitas M, Silva A, Reis L (2000) Numerical evaluation of failure mechanisms on composite specimens subjected to impact loading. Compos Part B Eng 31(3):2000

    Article  Google Scholar 

  • Donald A, WIndle A, Hanna S (2006) Liquid crystal polymers as structural materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Dorey, G. (1987). Impact damage in composites—development, consequences, and prevention. In: Proceedings of the 6th international conference on composite materials (ICCM-6) and the 2nd European conference on composite materials (ECCM-2). London

    Google Scholar 

  • Dorey G, Bishop SM, Curtis PT (1985) On the impact performance of carbon fibre laminates with epoxy and PEEK matrices. Compos Sci Technol 23(3):221–237

    Article  CAS  Google Scholar 

  • El-Zein M, Reifsnider K (1990) On the prediction of tensile strength after impact of composite laminates. J Compos Tech Res 12(3):147–154

    Article  Google Scholar 

  • Evci C, Gulgec M (2012) An experimental investigation on the impact response of composite materials. Int J Impact Eng 43:40–51

    Article  Google Scholar 

  • Garcia-Rodriguez SM, Costa J, Bardera A, Singery V, Trias D (2000) A 3D tomographic investigation to elucidate the low-velocity impact resistance, tolerance, and damage sequence of thin-non-crimp fabric laminates: effect of ply-thickness. Compos a Appl Sci Manuf 31(3):53–65

    Google Scholar 

  • Godwin EW, Davies GA (1988) Impact behaviour of Thermoplastic composites. In: Composite materials technology. Springer, Berlin

    Google Scholar 

  • Greenhalgh E (2009) Failure analysis and fractography of polymer composites. Woodhead Publishing, London

    Book  Google Scholar 

  • Hart KR, Chia PX, Sheridan LE, Wetzel ED, Sottos NR, White SR (2017) Comparison of compression-after-impact and flexure-after-impact protocols for 2D and 3D woven fiber-reinforced composites. Compos Appl Sci Manuf 101:471–479

    Article  CAS  Google Scholar 

  • Hazzard MK, Curtis PT, Iannucci L, Trask RS (2017) Effect of fibre orientation on the low velocity impact response of thin dyneema composite laminates. Int J Impact Eng 100:35–45

    Article  Google Scholar 

  • Heimbs S, Wagner T, Lozoya JT, Hoenisch B, Franke F (2018) Comparison of impact behaviour of glass, carbon, and dyneema composites. Proc Inst Mech Eng Part C J Mech Eng Sci

    Google Scholar 

  • Hexcel (2018) Hextow IM7 carbon fibre—technical datasheet. Hexcel

    Google Scholar 

  • Iannucci L (2018) Design of composite ballistic protection systems. Comprehensive composite materials II. Elsevier, London, pp 308–331

    Chapter  Google Scholar 

  • Laffan MJ, Pinho ST, Robinson P, McMillan AJ (2012) Translaminar fracture toughness of composite: a review. Polym Testing 31(3):481–489

    Google Scholar 

  • Jih CH (1993) Prediction of delamination in composite laminates subjected to low velocity impact. J Compos Mater 27(7):684–701

    Article  CAS  Google Scholar 

  • Karthikeyan KR, Fleck NA, Wadley HN, Deshpande VS (2013) The effect of shear strength on the ballistic response of laminated composite plates. Euro J Mech Solids 42:35–53

    Article  Google Scholar 

  • Karthikeyan K, Kazemahvazi S, Russell BP (2016) Optimal fibre architecture of soft-matrix ballistic laminates. Int J Impact Eng 88:227–237

    Article  Google Scholar 

  • Katafiasz TJ, Iannucci L, Greenhalgh ES (2019) Development of a novel compact tension specimen to mitigate premature compression and buckling failure modes within fibre hybrid composites. Compos Struct 207:93–107

    Google Scholar 

  • Khondker OA, Leong KH, Herszberg I, Hamada H (2005) Impact and compression-after-impact performance of weft-knitted glass textile composites. Compos a Appl Sci Manuf 35(5):636–648

    Google Scholar 

  • Koh AC, Shim VP, Tan VB (2010) Dynamic behaviour of UHMWPE yarns and addressing impendance mismatch effects of specimen clamps. Int J Impact Eng 37(3):324–332

    Article  Google Scholar 

  • Kuraray America (2006) Vectran: liquid crystal technology—technical report. Kuraray

    Google Scholar 

  • Liaw B, Delale F (2007) Hybrid carbon-glass fibre/toughened epoxy thick composite joints subjected to drop weight and ballistic impacts. US Army Research Office, New York

    Google Scholar 

  • Liu D (1988) Impact induced delamination—a view of bending stiffness mismatching. J Compos Mater 22(7):674–692

    Article  CAS  Google Scholar 

  • Miao H, Wu Z, Ying Z, Hu X (2019) The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Compos Struct 227:1–11

    Article  Google Scholar 

  • Mitrevski T, Marshall IH, Thomson R (2006) The influence of impactor shape on the damage of composite laminates. Compos Struct 76(1–2):116–122

    Article  Google Scholar 

  • Mitrevski T, Marshall IH, Thomson R, Jones R, Whittingham B (2015) The effect of impactor shape on the impact response of composite laminates. Compos Struct 67(2):139–148

    Google Scholar 

  • Naik and Shrirao, 2004. Naik NK, Shrirao PS (2004) Composite structures under ballistic impact. Compos Struct 66(1–4):579–590

    Google Scholar 

  • Naik NK, Shrirao P, Reddy BC (2005) Ballistic impact behaviour of woven fabric composites: parametric studies. Mater Sci Eng 412:104–106

    Article  CAS  Google Scholar 

  • Olsson R (2001) Analytical prediction of large mass impact damage in composite laminates. Compos Appl Sci Manuf 32(9):1207–1215

    Article  Google Scholar 

  • Olsson R (2010) Analytical model for delamination growth during small mass impact on plates. Int J Solids Struct 47(21):2884–2892

    Article  CAS  Google Scholar 

  • Olsson R, Donadon MV, Falzon BG (2006) Delamination threshold load for dynamic impact on plates. Int J Solids Struct 43(10):3124–3141

    Article  Google Scholar 

  • Pandya KS, Pothnis JR, Ravikumar G, Naik NK (2008) Stress wave attenuation in composites during ballistic impact. Polym Testing 31(2):261–266

    Article  CAS  Google Scholar 

  • Park R, Jang J (2001) Impact behaviour of Aramid fibre/glassfibre hybrid composite: evaluation of a four-layer hybrid composites. J Mater Sci 36(9):23592367

    Google Scholar 

  • Park R, Jang J (2004) Impact behaviour of aramid fibre/glass fibre hybrid composites the effect of stacking sequence. Polym Compos 22(1):80–89

    Article  Google Scholar 

  • Puck S, Schurman H (1998) Failure analysis of FRP lamiants by means of physically based phenomenological models. Compos Sci Technol 58(7):1045–1067

    Article  Google Scholar 

  • Olsson R, Donadon MV, Falzon BG (2006) Delamination threshold load for dynamic impact on plates. Int J Solids Struct 43(10):3124–3141

    Google Scholar 

  • Reddy TS, Reddy PR, Madhu V (2017) Response of E-glass/epoxy and dyneema composite laminates subjected to low and high velocity impact. Procedia Eng 173:278–285

    Article  CAS  Google Scholar 

  • Richardson MO, Wisheart WJ (1996) Review of low-velocity impact properties of composite materials. Compos Appl Sci Manuf 27(12):1123–1131

    Article  Google Scholar 

  • Robinson P, Davies GA (1992) Impactor mass and specimen geometry effects in low velocity impact of laminated composites. Int J Impact Eng 12(2):189–207

    Article  Google Scholar 

  • Saleh MN, El-Dessouky HM, Saeedifar M, Freitas ST, Scaife RJ, Zarouchas D (2019) Compression after multiple low velocity impacts of NCF, 2D and 3D woven composites. Compos Appl Sci Manuf 125:1–12

    Article  CAS  Google Scholar 

  • Sanchez-Saez S, Barbero EZ, Navarro C (2005) Compression after impact of thin composite laminates. Compos Sci Technol 65(13):1911–1919

    Article  CAS  Google Scholar 

  • Schoeppner GA, Abrate S (2000) Delamination threshold loads for low velocity impact on composite laminates. Compos Part A Appl Sci Manuf 31(9):903–915

    Article  Google Scholar 

  • Schoeppner GA, Abrate S (2000) Delmination threshold loads for low velocity impact on composite laminates. Compos Appl Sci Manuf 31(9):903–915

    Article  Google Scholar 

  • Shaktivesh NS, Sesha-Kumar CV, Naik NK (2013) Ballistic impact performance of composite targets. Mater Des 51:833–846

    Article  CAS  Google Scholar 

  • Sharma AP, Khan SH, Velmurugan R (2019) Effect of through thickness separation of fiber orientation on low velocity impact response of thin composite laminates. Heliyon 5(10):1–14

    Article  CAS  Google Scholar 

  • Shyr T-W, Pan YH (2003) Impact resistance and damage characteristics of composite laminates. Compos Struct 62(2):193–203

    Article  Google Scholar 

  • Sikarwar RS, Velmurugan R, Gupta NK (2017) Effect of velocity and fibres on impact performance of composite laminates—analytical and experimental approach. Int J Crashworthiness 22(6):589–601

    Article  Google Scholar 

  • Silberschmidt VV (2016) Dynamic deformation, damage, and fracture in composite materials and structures. Woodhead Publishing, Loughborough

    Google Scholar 

  • Singh V (2018) Literature survey of strain rate effects on composites—technical Report. Swerea SICOMP, Sweden

    Google Scholar 

  • Sjoblom PO, Hartness TJ (1988) On low-velocity impact testing of composite materials. J Compos Mater 22(1):30–52

    Article  Google Scholar 

  • Sonnenfeld C, Mendil-Jakani H, Agogue R, Nunez P, Beauchene P (2017) Thermoplastic/thermoset multilayer composites: a way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos Strucut 171:298–305

    Article  Google Scholar 

  • Syed Abdullah SIB (2019) The impact behaviour of high performance fibre composites, Ph.D. thesis. Imperial College London, London

    Google Scholar 

  • Syed Abdullah SIB, Iannucci L, Greenhalgh, ES (2018) On the translaminar fracture toughness of Vectran/epoxy composite material. Compos Struct 202:566–577

    Article  Google Scholar 

  • Syed Abdullah SIB, Iannucci L, Greenhalgh ES, Ahmad Z (2021) The impact performance of Vectran/Epoxy composite laminates with a novel non-crimp fabric architecture. Compos Struct 265:1–17

    Google Scholar 

  • Tan KT, Watanabe N, Iwahori Y, Ishikawa T (2012) Effect of stitch density and stitch thread thickness on compression after impact strength and response of stitched composites. Compos Sci Technol 72(5):587–598

    Article  CAS  Google Scholar 

  • Tan VB, Zeng XS, Shim VP (2010) Characterization and constitutive modelling of Aramid fibres at high strain rate. Int J Impact Eng 37(3):324–332

    Google Scholar 

  • Vaidya UK (2011) Impact response of laminated and sandwich composites. Impact engineering of composite structures. Springer, Udine, pp 97–191

    Chapter  Google Scholar 

  • Vieille B, Casado VM, Bouvet C (2013) About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic and thermosetting composites: a comparative study. Compos Struct 101:9–21

    Article  Google Scholar 

  • Wang Y, **a YM (1998) The effects of strain rate on the mechanical behaviour of Kevlar fibre bundle: an experimental and theoretical study. Compos a Appl Sci Manuf 29(11):1411–1415

    Article  Google Scholar 

  • Williams KV, Vaziri R, Poursartip A (2003) A physically based continuum damage mechanics model for thin laminated composite structures. Int J Solids Struct 40(9):2267–2300

    Article  Google Scholar 

  • Wisnom MR (2012) The role of delamination in failure of fibre-reinforced composites. Philos Trans Roy Soc 370(1965):1850–1870

    Article  CAS  Google Scholar 

  • Zhou G (2003) Prediction of impact damage thresholds of glass fibre reinforced laminates. Compos Struct 62(2):193–203

    Google Scholar 

  • Zhou J, Liao B, Shi Y, Zuo Y, Tuo H, Jia L (2019) Low-velocity impact behaviour and residual tensile strength of CFRP laminates. Compos B Eng 161:300–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed Abdullah, S.I.B. (2021). Low Velocity Impact Testing on Laminated Composites. In: Hameed Sultan, M.T., Shah, A.U.M., Saba, N. (eds) Impact Studies of Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-1323-4_1

Download citation

Publish with us

Policies and ethics

Navigation