Plasmonic Photothermal Therapy (PPTT) of Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects
  • 30 Accesses

Abstract

The generation of electromagnetic field within and around the dissipative nanostructures upon light radiation on them is closely associated with the formation of localized heat sources. There are a number of applications associated with the use of nanoparticles as heat sources, viz. drug and gene transportation in the human body, magnetic recording using heat, photo-acoustic imaging, plasmonic-induced nano-chemistry, photothermal imaging, solar steam generation, and single living cell experiments. But this chapter is intended to present the introduction to nanotechnology, its growing application horizons, plasmonics and plasmonic photothermal therapy applications based on the use of metal nanoparticles as nanosources of heat for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi A, Park K, Bose A, Bothun GD (2017a) Near-infrared responsive gold–layer some nanoshells. Langmuir 33(21):5321–5327

    Article  CAS  PubMed  Google Scholar 

  • Abbasi A, Park K, Bose A, Bothun GD (2017b) Near-infrared responsive gold–layer some nanoshells. Langmuir 33(21):5321–5327

    Article  CAS  PubMed  Google Scholar 

  • Almeida JPM, Lin AY, Figueroa ER, Foster AE, Drezek RA (2015) In vivo gold nanoparticle delivery of peptide vaccine induces an anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11(12):1453–1459

    Article  CAS  PubMed  Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A et al (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  CAS  PubMed  Google Scholar 

  • Borzenkov M, Määttänen A, Ihalainen P, Collini M, Cabrini E, Dacarro G et al (2016) Fabrication of inkjet-printed gold nanostar patterns with photothermal properties on paper substrate. ACS Appl Mater Interfaces 8(15):9909–9916

    Article  CAS  PubMed  Google Scholar 

  • Britto JD, Sebastian SR (2011) Biosynthesis of silver nanoparticles and its antibacterial activity against human pathogens. Int J Pharm Pharm Sci 5:257–259

    Google Scholar 

  • Burlaka A, Lukin S, Prylutska S, Remeniak O, Prylutskyy Y, Shuba M et al (2010) Hyperthermic effect of multi-walled carbon nanotubes stimulated with near-infrared irradiation for anticancer therapy: in vitro studies. Exp Oncol 32(1):48–50

    CAS  PubMed  Google Scholar 

  • Cassano D, Santi M, D’Autilia F, Mapanao AK, Luin S, Voliani V (2019a) Photothermal effect by NIR-responsive excretable ultrasmall-in-nano architectures. Mat Horizons 6(3):531–537

    Article  CAS  Google Scholar 

  • Cassano D, Summa M, Pocoví-Martínez S, Mapanao AK, Catelani T, Bertorelli R, Voliani V (2019b) Biodegradable Ultrasmall-in-Nano gold architectures: mid-period in vivo distribution and excretion assessment. Part Part Syst Charact 36(2):1800464

    Article  Google Scholar 

  • Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ (2018) Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 12(6):5646–5656

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhouhua W, Jie Z, **nlu F, **qiang L, Yuwen Q, Zhiying H (2015) Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomedicine 10:1

    Article  PubMed  Google Scholar 

  • Das S (2013) A review on carbon nano-tubes-a new era of nanotechnology. Int J Emerg Technol Adv Eng 3(3):774–783

    Google Scholar 

  • Emerich DF, Thanos CG (2003) Nanotechnology and medicine. Expert Opin Biol Ther 3(4):655–663

    Article  CAS  PubMed  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Suenaga K, Iijima S (2008) Smallest carbon nanotube assigned with atomic resolution accuracy. Nano Lett 8(2):459–462

    Article  CAS  PubMed  Google Scholar 

  • Hauck TS, Jennings TL, Yatsenko T, Kumaradas JC, Chan WC (2008) Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv Mater 20(20):3832–3838

    Article  CAS  Google Scholar 

  • Heller MJ, Forster AH, Tu E (2000) Active microelectronic chip devices which utilize controlled electrophoretic fields for multiplex DNA hybridization and other genomic applications. ELECTROPHORESIS: an. Int J 21(1):157–164

    CAS  Google Scholar 

  • Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):S2919

    Article  CAS  Google Scholar 

  • Herizchi R, Abbasi E, Milani M, Akbarzadeh A (2016) Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol 44(2):596–602

    Article  CAS  PubMed  Google Scholar 

  • Hilger I, Hergt R, Kaiser WA (2005, February) Use of magnetic nanoparticle heating in the treatment of breast cancer. In: IEE Proceedings-Nanobiotechnology, vol 152(1). IET Digital Library, Stevenage, pp 33–39

    Google Scholar 

  • Huang J, Tan Q (2010) High speed and high precision numerical control EDM. Die Mould Technol 1:13

    Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217

    Article  PubMed  Google Scholar 

  • Hussain JI, Kumar S, Hashmi AA, Khan Z (2011a) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mater Lett 2(3):188–194

    Article  CAS  Google Scholar 

  • Hussain JI, Kumar S, Hashmi AA, Khan Z (2011b) Silver nanoparticles: preparation, characterization, and kinetics. Adv Mater Lett 2(3):188–194

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • ** C, Wang K, Oppong-Gyebi A, Hu J (2020) Application of nanotechnology in cancer diagnosis and therapy-a mini-review. Int J Med Sci 17(18):2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** S, Ye K (2007) Nanoparticle-mediated drug delivery and gene therapy. Biotechnol Prog 23(1):32–41

    Article  CAS  PubMed  Google Scholar 

  • Johannsen M, Thiesen B, Jordan A, Taymoorian K, Gneveckow U, Waldöfner N et al (2005) Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic dunning R3327 rat model. Prostate 64(3):283–292

    Article  PubMed  Google Scholar 

  • Joshi A, Punyani S, Bale SS, Yang H, Borca-Tasciuc T, Kane RS (2008) Nanotube-assisted protein deactivation. Nat Nanotechnol 3(1):41–45

    Article  CAS  PubMed  Google Scholar 

  • Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I (2017) The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 11:2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kam NWS, O'Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnati KR, Wang Y (2018) Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys Chem Chem Phys 20(14):9389–9400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karthik L, Kirthi AV, Ranjan S, Srinivasan VM (2019) Biological synthesis of nanoparticles and their applications. CRC Press, Milton

    Book  Google Scholar 

  • Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    Article  CAS  PubMed  Google Scholar 

  • Kirui DK, Rey DA, Batt CA (2010) Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 21(10):105105

    Article  PubMed  Google Scholar 

  • Kumar H, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775

    Google Scholar 

  • Li C, Shuford KL, Park QH, Cai W, Li Y, Lee EJ, Cho SO (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem 119(18):3328–3332

    Article  Google Scholar 

  • Li P, Shi YW, Li BX, Xu WC, Shi ZL, Zhou C, Fu S (2015) Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-asp peptides-conjugated gold nanorods that target αvβ3 in melanoma cancer cells. J Nanobiotechnol 13(1):52

    Article  CAS  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    Article  CAS  PubMed  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Mohammed IA, Al-Gawhari FJ (2020) Gold nanoparticle: synthesis, functionalization, enhancement, drug delivery, and therapy: a review. Syst Rev Pharm 11(6):888–910

    Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18(4):267–284

    Article  CAS  Google Scholar 

  • Pandey P, Dahiya M (2016) A brief review on inorganic nanoparticles. J Crit Rev 3(3):18–26

    Google Scholar 

  • Parungo CP, Ohnishi S, Alec M, Laurence RG, Soltesz EG, Colson YL et al (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11(12):1085–1092

    Article  PubMed  Google Scholar 

  • Patil S, Sivaraj R, Rajiv P, Venckatesh R, Seenivasan R (2015) Green synthesis of silver nanoparticles from leaf extract of Aegle marmelos and evaluation of its antibacterial activity. Int J Pharm Pharm Sci 7(6):169–173

    CAS  Google Scholar 

  • Prasad SR, Elango K, Damayanthi D, Saranya JS (2013) Formulation and evaluation of azathioprine loaded silver nanoparticles for the treatment of rheumatoid arthritis. Asian J Biomed Pharmaceut Sci 3(23):28–32

    Google Scholar 

  • Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4):e1449

    Article  Google Scholar 

  • Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–6831

    Article  CAS  PubMed  Google Scholar 

  • Roszek B, De Jong WH, Geertsma RE (2005) Nanotechnology in medical applications: state-of-the-art in materials and devices. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Catharijnesingel

    Google Scholar 

  • Sachlos E, Gotora D, Czernuszka JT (2006) Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototy** to contain internal microchannels. Tissue Eng 12(9):2479–2487

    Article  CAS  PubMed  Google Scholar 

  • Savarimuthu WP, Gananathan P, Rao AP, Manickam E, Singaravelu G (2015) Protoporphyrin IX-gold nanoparticle conjugates for targeted photodynamic therapy–an in-vitro study. J Nanosci Nanotechnol 15(8):5577–5584

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Article  Google Scholar 

  • Shrivastava S, Dash D (2009) Applying nanotechnology to human health: revolution in biomedical sciences. J Nanotechnol 2009:184702

    Article  Google Scholar 

  • Soares JM, Cabral FAO, de Araújo JH, Machado FLA (2011) Exchange-spring behavior in nanopowders of CoFe 2 O 4–CoFe 2. Appl Phys Lett 98(7):072502

    Article  Google Scholar 

  • Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA et al (2014) Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8(3):2725–2738

    Article  CAS  PubMed  Google Scholar 

  • Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors, and detectors. Sci Technol Adv Mater 6(3–4):312–318

    Article  CAS  Google Scholar 

  • Vial S, Reis RL, Oliveira JM (2017) Recent advances using gold nanoparticles as a promising multimodal tool for tissue engineering and regenerative medicine. Curr Opinion Solid State Mater Sci 21(2):92–112

    Article  CAS  Google Scholar 

  • Wang H, Han J, Lu W, Zhang J, Li J, Jiang L (2015) Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties. J Colloid Interface Sci 440:236–244

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Q, **e J, ** Z, Wang J, Li Y et al (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9(9):3137–3141

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–3323

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Zhang L, Wang J, He Y, **n J, Wang S et al (2016) Gold nanoparticle-mediated phototherapy for cancer. J Nanomat 2016:1–29

    CAS  Google Scholar 

  • Yu X, Gao D, Gao L, Lai J, Zhang C, Zhao Y et al (2017) Inhibiting metastasis and preventing tumor relapse by triggering host immunity with tumor-targeted photodynamic therapy using photosensitizer-loaded functional nanographene. ACS Nano 11(10):10147–10158

    Article  CAS  PubMed  Google Scholar 

  • Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A et al (2017) New methods in the diagnosis of cancer and gene therapy of cancer-based on nanoparticles. Cancer Gene Ther 24(6):233–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Chen H, Liu AY, Shen JJ, Shah V, Zhang C et al (2016) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Verma, S.S., Bhatia, P. (2022). Plasmonic Photothermal Therapy (PPTT) of Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation