Pro-apoptotic Effects of Dietary Flavonoids In Oxidative Stress-Induced Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Flavonoids are bioactives that are seen abundantly in various parts of plants, especially in fruits and vegetables. Flavonoids are classified into different subclasses, including anthocyanins, flavanols, chalcones, flavanones, flavones, and isoflavones. Many dietary flavonoids exhibit health-promoting effects, mainly disease preventive actions such as antioxidant, antimicrobial, cardioprotective, hepatoprotective, neuroprotective, antidiabetic, anti-inflammatory, antiproliferative, and anti-cancer. Dietary flavonoids typically help to reduce cellular oxidative stress and modulate dysregulated signaling pathways and thereby gene expression. Oxidative stress regulation is an essential factor in cancer treatment. Normal and cancerous cells mainly differ in their redox status. In cancer cells, there are increased levels of reactive oxygen species; hence, several anti-cancer therapies largely focus on modulating these reactive oxygen species levels. Recent studies suggest that small molecules with bioactive properties support to reduce the side effects of anti-cancer drugs. This chapter will briefly discuss the pro-apoptotic effects of some of the major dietary flavonoids such as quercetin, morin, EGCG, genistein, daidzein, apigenin, luteolin, and myricetin in oxidative stress-induced cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2019) Flavonoids in cancer and apoptosis. Cancers (Basel). https://doi.org/10.3390/cancers11010028

  • Adham AN, Abdelfatah S, Naqishbandi AM, Mahmoud N, Efferth T (2021) Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. Phytomedicine 80:153371

    Article  CAS  PubMed  Google Scholar 

  • Arnér ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  Google Scholar 

  • Banjerdpongchai R, Wudtiwai B, Khaw-on P, Rachakhom W, Duangnil N, Kongtawelert P (2016) Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways. Tumor Biol 37:227–237

    Article  CAS  Google Scholar 

  • Bi YL, Min M, Shen W, Liu Y (2018 Jan 15) Genistein induced anticancer effects on pancreatic cancer cell lines involves mitochondrial apoptosis, G0/G1cell cycle arrest and regulation of STAT3 signalling pathway. Phytomedicine 39:10–16

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Rogers JT, Walker WA (2012) The role of phosphoinositide 3-Kinase signaling in intestinal inflammation. J Signal Transduct 2012:1–13

    Article  Google Scholar 

  • Chen A, Jiang P, Zeb F, Wu X, Xu C, Chen L, Feng Q (2020) EGCG regulates CTR1 expression through its pro-oxidative property in non-small-cell lung cancer cells. J Cell Physiol 235(11):7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 24:851–874

    Article  CAS  Google Scholar 

  • Granato M, Gilardini Montani MS, Santarelli R, D’Orazi G, Faggioni A, Cirone M (2017) Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J Exp Clin Cancer Res 36:1–9

    Article  Google Scholar 

  • Hsieh PL, Liao YW, Hsieh CW, Chen PN, Yu CC (2020) Soy Isoflavone Genistein impedes cancer Stemness and Mesenchymal transition in head and neck cancer through activating miR-34a/RTCB Axis. Nutrients 12(7):1924

    Article  CAS  PubMed Central  Google Scholar 

  • Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A (2012) Primary, secondary metabolites, photosynthetic capacity and anti-oxidant activity of the Malaysian Herb Kacip Fatimah (Labisia pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci 13:15321–15342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** S, Zhang QY, Kang XM, Wang JX, Zhao WH (2010) Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann Oncol 21:263–268

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Phys Cell Physiol 295:C849

    Article  CAS  Google Scholar 

  • Kaushik S, Shyam H, Agarwal S, Sharma R, Nag TC, Dwivedi AK, Balapure AK (2019) Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci 239:117073

    Article  CAS  PubMed  Google Scholar 

  • Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P (2018) Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 18:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim W, Yang JH, Youn HS, Yun YJ, Seong KM, Youn B (2010) Myricetin inhibits Akt survival signaling and induces bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated hacat human immortalized keratinocytes. J Radiat Res 51:285–296

    Article  CAS  PubMed  Google Scholar 

  • Kim ME, Ha TK, Yoon JH, Lee JS (2014) Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res 34:701–706

    CAS  PubMed  Google Scholar 

  • Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW (2018) Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol 118:154–167

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Chauhan SS (2021) Daidzein induces intrinsic pathway of apoptosis along with ER α/β ratio alteration and ROS production. Asian Pac J Cancer Prev 22(2):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert JD, Elias RJ (2010) The anti-oxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Kim J, Park JK, Chung GH, Jang YS (2003) The anti-oxidant, rather than pro-oxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis. Exp Cell Res 291:386–397

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Hsiao M, Chang JL et al (2015) Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol 89:1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Park KS, Nam HS, Cho MK, Lee SH (2020) Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells. Korean J Physiol Pharmacol 24(6):493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YS, Qi WT, Guo W, Wang CL, Bin HZ, Li AK (2018) Genistein and daidzein induce apoptosis of colon cancer cells by inhibiting the accumulation of lipid droplets. Food Nutr Res 62:1–9

    Article  Google Scholar 

  • Liu J, Wang X, Yong H, Kan J, ** C (2018) Recent advances in flavonoid-grafted polysaccharides: synthesis, structural characterization, bioactivities and potential applications. Int J Biol Macromol 116:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J (2004) Molecular cell biology, 5th edn. W.H. Freeman and company, New York

    Google Scholar 

  • MadanKumar P, NaveenKumar P, Manikandan S, Devaraj H, NiranjaliDevaraj S (2014) Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling. Toxicol Appl Pharmacol 277(2):210–220

    Article  CAS  PubMed  Google Scholar 

  • MadanKumar P, NaveenKumar P, Devaraj H, NiranjaliDevaraj S (2015) Morin, a dietary flavonoid, exhibits anti-fibrotic effect and induces apoptosis of activated hepatic stellate cells by suppressing canonical NF-κB signaling. Biochimie 110:107–118

    Article  CAS  PubMed  Google Scholar 

  • Manohar M, Fatima I, Saxena R, Chandra V, Sankhwar PL, Dwivedi A (2013) (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation. J Nutr Biochem 24(6):940–947

    Article  CAS  PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2012) Oxidative stress in apoptosis and cancer: an update. Arch Toxicol 86:1649–1665

    Article  PubMed  Google Scholar 

  • Michels G, Wätjen W, Niering P, Steffan B, Thi QHT, Chovolou Y, Kampkötter A, Bast A, Proksch P, Kahl R (2005) Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology 206:337–348

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SM, Å amec D, Tomczyk M et al (2020) Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv 38:107316

    Article  CAS  PubMed  Google Scholar 

  • Nie ZY, Yang L, Liu XJ, Yang Z, Yang GS, Zhou J, Qin Y, Yu J, Jiang LL, Wen JK, Luo JM (2019) Morin inhibits proliferation and induces apoptosis by modulating the miR-188-5p/PTEN/AKT regulatory pathway in CML cells. Mol Cancer Ther 18(12):2296–2307

    Article  CAS  PubMed  Google Scholar 

  • Ning L, Zhao W, Gao H, Wu Y (2020) Hesperidin induces anticancer effects on human prostate cancer cells via ROS-mediated necrosis like cell death. J BUON 25(6):2629–2634

    PubMed  Google Scholar 

  • Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Sayyed U, Tiwari RK, Siddiqui MH, Pathak N, Bajpai P (2019) Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma. Nutr Cancer 71(4):676–687

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Khan F, Maurya P (2021) Targeting Jab1 using hesperidin (dietary phytocompound) for inducing apoptosis in HeLa cervical cancer cells. J Food Biochem 45(7):e13800

    Article  CAS  PubMed  Google Scholar 

  • Pandurangan AK, Ananda Sadagopan SK, Dharmalingam P, Ganapasam S (2014) Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling. Toxicol Mech Methods 24(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Jeon YK, You DH, Nam MJ (2013) Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem Toxicol 60:542–549

    Article  CAS  PubMed  Google Scholar 

  • Park C, Lee WS, Il GS et al (2015) Morin, a flavonoid from moraceae, induces apoptosis by induction of bad protein in human leukemic cells. Int J Mol Sci 16:645–659

    Article  Google Scholar 

  • Park H, Park S, Bazer FW, Lim W, Song G (2018) Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential. J Cell Physiol 233(9):7457–7466

    Article  CAS  PubMed  Google Scholar 

  • Perumal N, Perumal M, Halagowder D, Sivasithamparam N (2017a) Morin attenuates diethylnitrosamine-induced rat liver fibrosis and hepatic stellate cell activation by co-ordinated regulation of Hippo/Yap and TGF-β1/Smad signaling. Biochimie 140:10–19

    Article  CAS  PubMed  Google Scholar 

  • Perumal N, Perumal M, Kannan A, Subramani K, Halagowder D, Sivasithamparam N (2017b) Morin impedes Yap nuclear translocation and fosters apoptosis through suppression of Wnt/β-catenin and NF-κB signaling in Mst1 overexpressed HepG2 cells. Exp Cell Res 355(2):124–141

    Article  CAS  PubMed  Google Scholar 

  • Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxidative Med Cell Longev 2017:8416763

    Article  Google Scholar 

  • Prietsch RF, Monte LG, Da Silva FA et al (2014) Genistein induces apoptosis and autophagy in human breast MCF-7 cells by modulating the expression of pro-apoptotic factors and oxidative stress enzymes. Mol Cell Biochem 390:235–242

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Zhang T, Zhu X, Yang C, Wang Y, Zhou N, Ju B, Zhou T, Deng G, Qiu C (2019) Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int J Mol Sci 21(1):131

    Article  PubMed Central  Google Scholar 

  • Rajendran P, Maheshwari U, Muthukrishnan A, Muthuswamy R, Anand K, Ravindran B, Dhanaraj P, Balamuralikrishnan B, Chang SW, Chung WJ (2021) Myricetin: versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS-reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol Cell Biochem 476(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Daniele, Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. https://doi.org/10.1007/s00204-014-1330-7

  • Salti GI, Grewal S, Mehta RR, Das Gupta TK, Boddie AW, Constantinou AI (2000) Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. Eur J Cancer 36:796–802

    Article  CAS  PubMed  Google Scholar 

  • Seydi E, Salimi A, Rasekh HR, Mohsenifar Z, Pourahmad J (2018) Selective cytotoxicity of Luteolin and Kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting. Nutr Cancer 70(4):594–604

    Article  CAS  PubMed  Google Scholar 

  • Shendge AK, Chaudhuri D, Mandal N (2021) The natural flavones, acacetin and apigenin, induce Cdk-Cyclin mediated G2/M phase arrest and trigger ROS-mediated apoptosis in glioblastoma cells. Mol Biol Rep 48(1):539–549

    Article  CAS  PubMed  Google Scholar 

  • Sithara T, Arun KB, Syama HP, Reshmitha TR, Nisha P (2017) Morin inhibits proliferation of SW480 colorectal cancer cells by inducing apoptosis mediated by reactive oxygen species formation and uncoupling of warburg effect. Front Pharmacol 8:1–16

    Article  Google Scholar 

  • Souza RP, Bonfim-Mendonça PS, Gimenes F, Ratti BA, Kaplum V, Bruschi ML, Nakamura CV, Silva SO, Maria-Engler SS, Consolaro ME (2017) Oxidative stress triggered by Apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid Med Cell Longev 2017:1512745

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas C, Mackey MM, Diaz AA, Cox DP (2009) Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep 14:102–108

    Article  CAS  PubMed  Google Scholar 

  • Velavan B, Divya T, Sureshkumar A, Sudhandiran G (2018) Nano-chemotherapeutic efficacy of (-) -epigallocatechin 3-gallate mediating apoptosis in A549 cells: involvement of reactive oxygen species mediated Nrf2/Keap1signaling. Biochem Biophys Res Commun 503(3):1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang H, Jia Y, Pan H, Ding H (2017) Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma. Cancer Chemother Pharmacol 79(5):1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Warkad MS, Kim CH, Kang BG, Park SH, Jung JS, Feng JH, Inci G, Kim SC, Suh HW, Lim SS, Lee JY (2021) Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells. Sci Rep 11(1):14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18

    Article  Google Scholar 

  • Yang SF, Yang WE, Chang HR, Chu SC, Hsieh YS (2008) Luteolin induces apoptosis in oral squamous cancer cells. J Dent Res 87:401–406

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lim W, Bazer FW, Song G (2017) Myricetin suppresses invasion and promotes cell death in human placental choriocarcinoma cells through induction of oxidative stress. Cancer Lett 399:10–19

    Article  CAS  PubMed  Google Scholar 

  • Yi L, Zongyuan Y, Cheng G, Lingyun Z, Guilian Y, Wei G (2014) Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci 105(5):520–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu C, Jiao Y, Xue J, Zhang Q, Yang H, **ng L, Chen G, Wu J, Zhang S, Zhu W, Cao J (2017) Metformin sensitizes non-small cell lung cancer cells to an Epigallocatechin-3-Gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. Int J Biol Sci 13(12):1560–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang F, Thakur K, Wang J, Wang H, Hu F, Zhang JG, Wei ZJ (2018) Molecular mechanism of anti-cancerous potential of Morin extracted from mulberry in Hela cells. Food Chem Toxicol 112:466–475

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang J, Yu C et al (2020) Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. Onco Targets Ther 13:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan Kumar Perumal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vijay, V., Vijayan, N., Venkatiesh, V.P., Vallikannan, B., Perumal, M.K. (2022). Pro-apoptotic Effects of Dietary Flavonoids In Oxidative Stress-Induced Cancer. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_151-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_151-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation