The Housing and Husbandry of Zebrafish (Danio rerio) in a Laboratory Environment

  • Chapter
  • First Online:
Essentials of Laboratory Animal Science: Principles and Practices

Abstract

The international research community has witnessed the substantial contribution of the zebrafish, from its origins as a low-cost, model system for developmental biology research that has now been extended to a broad number of scientific disciplines including genetic analysis, gene regulation, angiogenesis, cancer biology, drug discovery, and toxicology. A high degree of genetic homology with humans and the advent of genome-editing CRISPR/Cas9 techniques allow for the creation of zebrafish knockouts that have helped elucidate gene function and identify disease genes in humans. Access to large-scale research resources, genetic markers, and mutant inventory that accumulated over the decades, combined with the availability of commercial aquatic housing systems, has led many investigators to choose zebrafish as a model system. Given its wide-scale usage, understanding new approaches and methods of zebrafish husbandry is essential to ensure efficient propagation and maintenance of healthy and genetically diverse fish lines. This chapter provides basic information about facility design, modern aquatic systems, water quality, husbandry, nutrition, breeding, and health of the zebrafish. Along with present-day resources, updates on the basic requirements for raising the zebrafish in laboratory conditions will benefit the zebrafish research community, facility managers, veterinarians, and technicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DPF:

Days postfertilization

HPF:

Hours postfertilization

WRS:

Water recirculation system

References

  1. Hisaoka KK, Battle HI (1958) The normal developmental stages of the zebrafish, brachydanio rerio (Hamilton-Buchanan). J Morphol 102:311–327. https://doi.org/10.1002/jmor.1051020205

    Article  Google Scholar 

  2. Weis JS (1968) Analysis of the development of nervous system of the zebrafish, Brachydanio rerio. I. The normal morphology and development of the spinal cord and ganglia of the zebrafish. J Embryol Exp Morphol 19:109–119

    CAS  PubMed  Google Scholar 

  3. Weis JS (1968) Analysis of the development of the nervous system of the zebrafish, Brachydanio rerio. II. The effect of nerve growth factor and its antiserum on the nervous system of the zebrafish. J Embryol Exp Morphol 19:121–135

    CAS  PubMed  Google Scholar 

  4. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  CAS  PubMed  Google Scholar 

  5. Volhard CN (2012) The zebrafish issue of development. Development 139:4099–4103. https://doi.org/10.1242/dev.085217

    Article  CAS  Google Scholar 

  6. Donizetti A, Fiengo M, Gaudio RD, Iazzetti G, Pariante P, Minucci S, Aniello F (2015) Expression pattern of zebrafish rxfp2 homologue genes during embryonic development. J Exp Zool B Mol Dev Evol 324:605–613. https://doi.org/10.1002/jez.b.22637

    Article  CAS  PubMed  Google Scholar 

  7. Machluf Y, Gutnick A, Levkowitz G (2011) Development of the zebrafish hypothalamus. Ann N Y Acad Sci 1220:93–105. https://doi.org/10.1111/j.1749-6632.2010.05945.x

    Article  PubMed  Google Scholar 

  8. Whitfield TT, Riley BB, Chiang MY, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223:427–458. https://doi.org/10.1002/dvdy.10073

    Article  PubMed  Google Scholar 

  9. Wang X, Wang X, Yuan W, Chai R, Liu D (2015) Egfl6 is involved in zebrafish notochord development. Fish Physiol Biochem 41:961–969. https://doi.org/10.1007/s10695-015-0061-x

    Article  CAS  PubMed  Google Scholar 

  10. Monk KR, Voas MG, Franzini AC, Hakkinen IS, Talbot WS (2013) Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology. Dis Model Mech 6:135–145. https://doi.org/10.1242/dmm.009217

    Article  PubMed  Google Scholar 

  11. Sonawane M, Martin MH, Schwarz H, Volhard CN (2009) Lgl2 and E-cadherin act antagonistically to regulate hemidesmosome formation during epidermal development in zebrafish. Development 136:1231–1240. https://doi.org/10.1242/dev032508

    Article  CAS  PubMed  Google Scholar 

  12. Xu M, Ye Y, Ye Z, Xu S, Liu W, Xu J, Zhang Y, Liu O, Huang Z, Zhang W (2020) Human BCR/ABL1 induces chronic myeloid leukemia-like disease in zebrafish. Haematologica 105:674–686. https://doi.org/10.3324/haematol.2019.215939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  CAS  PubMed  Google Scholar 

  14. Doughman E (2015) The use of CRISPR/Cas9 on zebrafish could speed human gene function. Discovery http://www.alnmag.com. Accessed 12 June 2015

  15. Brand M, Deuchle D, Endres F, Haffter P, Hammerschmidt M, Mullins M, Schulte-Merker S, Volhard CN, Luck R, Jurgen K, Schwarz S (1995) Kee** and raising zebrafish (Danio rerio) in Tubingen. The Zebrafish Sci Mon 3:2–7

    Google Scholar 

  16. Watts SA, Powell M, D’Abramo LR (2012) Fundamental approaches to the study of zebrafish nutrition. ILAR J 53:144–160

    Article  CAS  PubMed  Google Scholar 

  17. Penglase S, Moren M, Hamre K (2012) Standardize the diet for zebrafish model. Nature 491:333. https://doi.org/10.1038/491333a

    Article  CAS  PubMed  Google Scholar 

  18. Nelson JS (1994) Fishes of the world, 3rd edn. Wiley, New York

    Google Scholar 

  19. Hamilton F (1822) An account of the fishes found in the river Ganges and its branches. Constable, Edinburgh and London

    Book  Google Scholar 

  20. Hora SL (1937) Notes on fishes in the Indian museum XXXI. On a small collection of fish from Sandoway, lower Burma. Rec Ind Mus 39:323–331

    Google Scholar 

  21. Hora SL (1938) Notes on fishes in the Indian museum XXXI. On a small collection of fish from the Rajmahal Hills, Santhalparganes, Bihar. Rec Ind Mus 40:169–181

    Google Scholar 

  22. Chauhan BS, Ramakrishna G (1953) Fauna of the Balangir district (formerly Patna state), Orissa. Rec Ind Mus 51:395–416

    Google Scholar 

  23. Tilak R (1968) On a collection of fish from Sikkim. Rec Zool Surv Ind 66:277–286

    Article  Google Scholar 

  24. Arunachalam M, Johnson JA, Sankaranarayanan A (2003) Fishes of rain forest stream/rivers of India. A research overview. ENVIS. Bulletin on conservation of rain forests in India. Wild Life Institute of India (ed), pp 153–172

    Google Scholar 

  25. Day F (1878) The fishes of India: being a national history of the fishes known to inhabit the seas and fresh waters of India, Burma and Ceylon. Indian reprint by Jagmander book agency, New Delhi

    Google Scholar 

  26. Menon AGK (1962) A distributional list of fishes of Himalayas. J Zool Soc Ind 2:23–32

    Google Scholar 

  27. Spence R, Fatema MK, Reichard M, Huq KA, Wahab MA, Ahmed ZF, Smith C (2006) The distribution and habitat preferences of the zebrafish in Bangladesh. J Fish Biol 69:1435–1448. https://doi.org/10.1111/j10958649

    Article  Google Scholar 

  28. Whitely AR, Bhat A, Martins EP, Mayden RL, Arunachalam M, Heikkilä SU, Ahmed ATA, Shrestha J, Clark M, Stemple D, Bernatchez L (2011) Population genomics of wild and laboratory zebrafish. Mol Ecol 20:4259–4276. https://doi.org/10.1111/j.1365-294X.2011.05272.x

    Article  Google Scholar 

  29. Munshi JS, Srivastava MP (1988) Natural history of fishes and systematics of freshwater fishes of India. Narendra Publishing House, Delhi

    Google Scholar 

  30. Sen N (1995) Pisces. In: Ghosh AK (ed) Fauna of Meghalaya: part 1, vertebrates. Zool Surv India, Calcutta, pp 483–592

    Google Scholar 

  31. Menon AGK (1999) Check list-fresh water fishes of India. Rec Zool Surv India Occ Pap 175:366

    Google Scholar 

  32. Fang F (2001) Phylogeny and species diversity of the South and Southeast Asian cyprinid genus Danio Hamilton (Teleostei, Cyprinidae). PhD Thesis, Stockholm University, Stockholm, Sweden

    Google Scholar 

  33. Barman RP (1991) A taxonomic revision of the indo-Burmese species of Danio rerio. Rec Zool Surv Ind Occ Pap 137:1–91

    Google Scholar 

  34. Arunachalam M, Manickam R, Chinnian V, Malaiammal P, Mayden RL (2013) Natural history of zebrafish (Danio Rerio) in India. Zebrafish 10:1–14. https://doi.org/10.1089/zeb.2012.0803

    Article  PubMed  Google Scholar 

  35. Talwar PK, Jhingran AG (1991) Inland fishes of India and adjacent countries. Oxford & IBH Publishing, Calcutta, p 1158

    Google Scholar 

  36. Engeszer RE, Patterson LB, Rao AA, Parichy DM (2007) Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4:21–40. https://doi.org/10.1089/zeb.2006.9997

    Article  PubMed  Google Scholar 

  37. Hoggarth DD, Dam RK, Debnath K, Halls AS (1999) Recruitment sources for fish stocks inside a floodplain river impoundment in Bangladesh. Fish Mang Ecol 6:287–310. https://doi.org/10.1111/j.1365-2400.1999.tb00081.x

    Article  Google Scholar 

  38. Spence R, Gerlach G, Lawrence C, Smith C (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83:13–34. https://doi.org/10.1111/j.1469-185X.2007.00030.x

    Article  PubMed  Google Scholar 

  39. McClure MM, McIntyre PB, McCune AR (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish Danio rerio. J Fish Biol 69:553–570. https://doi.org/10.1111/j.1095-8649.2006.01125.x

    Article  Google Scholar 

  40. Junk WJ, Bayley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium (LARS), Canadian journal of fisheries and aquatic sciences special publication 106. NRC Research Press, Ottawa, pp 110–127

    Google Scholar 

  41. Paull GC (2008) Improving the welfare of laboratory-kept fish: available from Winston Churchill Memorial Trust. https://wcmt.org.uk/users/gregorypaull

  42. Jackson DA, Peres-Neto PR, Olden JD (2001) What controls who is where in freshwater fish communities — the roles of biotic, abiotic, and spatial factors. Can J Fish Aquat Sci 58:157–170. https://doi.org/10.1139/cjfas581157

    Article  Google Scholar 

  43. Dani R (2020) Assessment of genetic diversity of zebrafish (Danio rerio) from Arunachal Pradesh, MFSc Dissertation, ICAR-Central Institute of Fisheries Education (University Established Under Section 3 of UGC Act 1956) Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, India

    Google Scholar 

  44. Lawrence C, Mason T (2012) Zebrafish housing systems: a review of basic operating principles and considerations for design and functionality. ILAR J 53:179–191

    Article  CAS  PubMed  Google Scholar 

  45. NRC [National Research Council] (2011) Guide for the care and use of laboratory animals. National Academies Press, Washington

    Google Scholar 

  46. Sanders E (2013) Considerations and reflections on design and construction of a centralized zebrafish facility. Ani Lab News Mag https://www.alnmag.com. Accessed 10 May 2013

  47. Hardness in groundwater (2007) Health Canada, Guidelines for Canadian Drinking water quality supporting documents. http://www.hc-sc.gc/ewh-semt/pubs/water-eau/doc

  48. Lawrence C (2016) New frontiers for zebrafish management. Methods in cell biology. In: Detrich HW, Zon L, Westerfield M (eds) The zebrafish; genetics, genomics, and transcription, 4th edn. Academic Press, Elsevier Inc, pp 483–508

    Google Scholar 

  49. Zahangir MM, Haque F, Mostakim GM, Islam MS (2015) Secondary stress responses of zebrafish to different pH: evaluation in a seasonal manner. Aquacul Rep 2:91–96. https://doi.org/10.1016/J.AQREP.2015.08.008

    Article  Google Scholar 

  50. Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20. https://doi.org/10.1016/j.aquaculture.2007.04.077

    Article  Google Scholar 

  51. Chen S, Ling J, Blacheton JP (2006) Nitrification kinetics of biofilm as affected by water quality factors. Aquac Eng 34:179–197

    Article  Google Scholar 

  52. Harper C, Lawrence C (2011) The laboratory zebrafish. A volume in the laboratory animal pocket reference series. CRC Press Taylor and Francis Group, 6000 Broken Sound Pathway NW, Suite 300, Boca Raton, FL 33487-2742

    Google Scholar 

  53. Timmons MB, Ebelings JM (2013) Recirculating aquaculture (3rd ed.). Ithaca Publishing Company, LLC, Ithaca, NY

    Google Scholar 

  54. Hammer HS (2020) Water quality for zebrafish culture. In: Cartner SE et al (eds) Zebrafish in biomedical research. Biology, husbandry, diseases and research applications. Academic Press, pp 321–335

    Google Scholar 

  55. Kohale KN (2019) An incidence of acute mortality in laboratory zebrafish-a case report. J Lab Ani Sci 5:13–15

    Google Scholar 

  56. Brand M, Volhard CN, Dahm R (2002) Kee** and raising zebrafish. In: Volhard CN (ed) Zebrafish: a practical approach. Oxford University Press, New York, pp 1–37

    Google Scholar 

  57. Boyd CE, Tucker CS, Somridhivej B (2016) Alkalinity and hardness: critical but elusive concepts in aquacul. J World Aquac Soc 47:6–41. https://doi.org/10.1111/jwas.12241

    Article  Google Scholar 

  58. Wurts WA (2002) Understanding water hardness. Kentucky State University Cooperative Extension Program. WKY-192

    Google Scholar 

  59. Noga EJ (2010) Fish disease: diagnosis and treatment, 2nd edn. Wiley-Blackwell, Ames, IA

    Book  Google Scholar 

  60. Masser MP, Rakocy J, Losordo TM (1999) Recirculating aquaculture tank production systems management of recirculating systems. Southern Regional Aquaculture Center. Southern Regional Aquaculture Center Publication No 452

    Google Scholar 

  61. Summerfelt ST, Sharrer MJ (2004) Design implication of carbon dioxide production within biofilters contained in recirculating salmonid culture system. Aqua Eng 32:171–182

    Article  Google Scholar 

  62. Trevarrow B (2004) Zebrafish facilities for large and small laboratories. In: Detrich HW, Zon L, Westerfield M (eds) Methods in cell biology. The zebrafish: genetics, genomics, and informatics, vol 77. Elsevier, pp 565–591. https://doi.org/10.1016/s0091679x

  63. Moe MA (1989) The marine aquarium reference, system and invertebrate. Green Turtle Publication, Plantation FL

    Google Scholar 

  64. Timmons MB, Ebeling JW, Wheaton FW, Summerfelt ST, Vinci BJ (2001) Recirculating aquaculture system. Publication No. 01-002, Northwest Regional Aquaculture Center. Cayuga Aqua Ventures, Ithaca, NY

    Google Scholar 

  65. Burrell PC, Phalen CM, Hovanec TA (2001) Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl Environ Microbial 57:5781–5800

    Google Scholar 

  66. DeLong DP, Losordo TM (2012) How to start a biofilter. Publication ID SRAC 4502

    Google Scholar 

  67. Manthe DP, Malone RF (1987) Chemical addition for accelerated biological filter acclimation in closed blue crab shedding systems. Aquac Eng 6:227–236. https://doi.org/10.1016/0144-8609(87)90006-9

    Article  Google Scholar 

  68. Losordo TM, Masser MP, Rakocy JE (1999) Recirculating aquaculture tank production systems. Southern Regional Aquaculture Center, Southern Regional Aquaculture Center Publication No 453

    Google Scholar 

  69. Timmons MB, Ebeling JM, Wheaton FW, Summerfelt ST, Vinci BJ (2002) Recirculating aquaculture system, 2nd edn. Cayuga Aqua Ventures LIc, Ithaca, NY

    Google Scholar 

  70. Hrubec T, Smith SA, Robertson JL (1996) Nitrate toxicity: a potential problem of recirculating systems. Aqua Eng Soc Proc 1:41–48. https://www.researchgate.net/ publication/267377185

    Google Scholar 

  71. System manual and as built instructions (2011) Mechanical filtration RM8 filter assembly, Chemical filtrations, Section V-D. Aquatic Habitat

    Google Scholar 

  72. Cortemeglia C, Beitinger TL (2005) Temperature tolerances of wild-type and red transgenic zebra danios. J Trans Ame Fish Soc 134:1431–1437. https://doi.org/10.1577/T04-197.1

    Article  Google Scholar 

  73. Schaefer J, Ryan A (2006) Developmental plasticity in the thermal tolerance of zebrafish Danio rerio. J Fish Biol 69:722–734. https://doi.org/10.1111/j.1095-8649.2006.01145.x

    Article  Google Scholar 

  74. Barrionuevo WR, Burggren WW (1999) O2 consumption and heart rate in develo** zebrafish (Danio rerio): influence of temperature and ambient O2. Am J Phys RegulInteg Comp Phys 276:506–513. https://doi.org/10.1152/ajpregu.1999.276.2.R505

    Article  Google Scholar 

  75. Zynda JR (2020) Aquatics facility design considerations: incorporating aquatics into an Animal Facility. In: Cartner SE et al (eds) Zebrafish in biomedical research. Biology, husbandry, diseases and research applications. Academic Press, pp 265–277

    Google Scholar 

  76. Johnson SL, Africa D, Horne S, Postlethwait JH (1995) Half-tetrad analysis in zebrafish: map** the ros mutation and the centromere of linkage group I. Genetics 139:1727–1735

    Google Scholar 

  77. Krause HJ (1992) Hand bucha quarien technik. bedeverlag, Kollngurg, Germany

    Google Scholar 

  78. Shinya M, Sakai N (2011) Generation of highly homogeneous strains of zebrafish through full sib-pair mating. G3 (Bethesda) 1:377–386. https://doi.org/10.1534/g3.111.000851

    Article  Google Scholar 

  79. Shinya M (2016) Construction of the inbred strain. In: Kawakami K (ed) Zebrafish: methods and protocols. Methods in molecular biology, vol 1451, pp 107–118

    Chapter  Google Scholar 

  80. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish; an overview of genetic, physiological, and environmental influences. Aqua 208:191–364

    Article  CAS  Google Scholar 

  81. Maack G, Segner H (2003) Morphological development of the gonads in zebrafish. J Fish Biol 62:895–906

    Article  Google Scholar 

  82. Lawrence C, Ebersole JP, Kesseli RV (2007) Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Env Biol Fish 81:239–246. https://doi.org/10.1007/s10641-007-9195-8

    Article  Google Scholar 

  83. Delaney M, Follet C, Ryan N, Hanney N, Lusk-Yablick J, Gerlach G (2002) Social interaction and distribution of female zebrafish (Danio rerio) in a large aquarium. Biol Bull 203:240–241. https://doi.org/10.2307/1543418

    Article  PubMed  Google Scholar 

  84. Hutter S, Penn DJ, Magee S, Zala SM (2010) Reproductive behavior of wild zebrafish (Danio rerio) in large tanks. Behaviour 147:641–660. https://doi.org/10.1163/000579510X12632972473944

    Article  Google Scholar 

  85. Spence R, Fatema MK, Ellis S, Ahmed ZF, Smith C (2007) Diet, growth and recruitment of wild zebrafish in Bangladesh. J Fish Biol 71:304–309. https://doi.org/10.1111/j.1095-8649.2007.01492.x

    Article  Google Scholar 

  86. Westerfield M (1995) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 3rd edn. University of Oregon Press, Eugene, p 385

    Google Scholar 

  87. Adatto I, Lawrence C, Thompson M, Zon LI (2011) A new system for the rapid collection of large numbers of developmentally staged zebrafish embryos. PLoS One 6:1–7

    Article  CAS  Google Scholar 

  88. Eaton RC, Farley RD (1974) Spawning cycle and egg production in zebrafish. Brachydanio rerio, Reared in the laboratory. Copeia 1:195–204

    Article  Google Scholar 

  89. Baganz D, Siegmund R, Staaks G, Pflugmacher S, Steinberg CEW (2005) Temporal pattern in swimming activity of two fish species (Danio rerio and Leucaspius delineatus) under chemical stress conditions. Biol Rhyt Res 36:263–276. https://doi.org/10.1080/09291010500103112

    Article  CAS  Google Scholar 

  90. Plaut I (2000) Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio. J Exp Biol 203:813–820

    Article  CAS  PubMed  Google Scholar 

  91. Castranova D, Wang C (2020) Zebrafish breeding and colony management. In: Cartner SE et al (eds) Zebrafish in biomedical research. Biology, husbandry, diseases and research applications. Academic Press, pp 357–364

    Google Scholar 

  92. Castranova D, Lawton A, Lawrence C, Baumann DP, Best J, Coscolla J (2011) The effect of stocking densities on reproductive performance in laboratory zebrafish (Danio rerio). Zebrafish 8:141–146. https://doi.org/10.1089/zeb.2011.0688

  93. Kohale KN (2015) Zebrafish breeding in laboratory environment at TIFR. J Lab Ani Sci 3:25–30

    Google Scholar 

  94. Spence R, Smith C (2006) Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav Ecol 17:779–783

    Article  Google Scholar 

  95. Wilson C (2012) Aspects of larval rearing. ILAR J 53:169–178

    Article  CAS  PubMed  Google Scholar 

  96. Harper C, Lawrence C (2010) The laboratory zebrafish (laboratory animal pocket reference). CRC Press, Boca Raton, FL

    Google Scholar 

  97. Penman DJ, Piferrer F (2008) Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev Fish Sci 16:14–13

    Article  CAS  Google Scholar 

  98. Villamizar N, Ribas L, Piferrer F, Vera LM, Javier F, Vazquez S (2012) Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS One 12:1–9

    Google Scholar 

  99. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  100. ZIRC (2020) Embryo surface sanitation (egg bleaching) protocol. https://zebrafish.org. Accessed 30 May 2020

  101. Chang CT, Amack JD, Whipps CM (2016) Zebrafish embryo disinfection with povidone-iodine: evaluating an alternative to chlorine bleach. Zebrafish 13:96–101. https://doi.org/10.1089/zeb.2015.1229

    Article  CAS  Google Scholar 

  102. Kent ML, Harper C, Wolf JC (2012) Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J 53:126–134

    Article  CAS  PubMed  Google Scholar 

  103. Murray KN, Dreska M, Nasiadka A, Rinne M, Matthews JL, Carmichael C, Bauer J, Varga ZM, Westerfield M (2011) Transmission, diagnosis, and recommendations for control of Pseudoloma neurophilia infections in laboratory zebrafish (Danio rerio) facilities. Comp Med 61:322–329

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Carvalho AP, Araújo L, Santos MM (2006) Rearing zebrafish (Danio rerio) larvae without live food: evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquacult Res 37:1107–1111. https://doi.org/10.1111/j.1365-2109.2006.01534.x

    Article  CAS  Google Scholar 

  105. Hensley MR, Leung YF (2010) A convenient dry feed for raising zebrafish larvae. Zebrafish 7:219–231. https://doi.org/10.1089/zeb.2010.0652

    Article  PubMed  Google Scholar 

  106. Verga ZM (2011) Aquaculture and husbandry at the zebrafish international resource center. Meth Cell Biol 104:453–478. https://doi.org/10.1016/B978-0-12-374814-0.00024-0

    Article  Google Scholar 

  107. Larson ET, O’Malley DM, Melloni RH Jr (2006) Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res 167:94–102

    Article  CAS  PubMed  Google Scholar 

  108. Gerlach G (2006) Pheromonal regulation of reproductive success in female zebrafish: female suppression and male enhancement. Anim Behav 72:1119–1124

    Article  Google Scholar 

  109. Engeszer RE, Albericida BL, Ryan MJ, Parichy DM (2007) Timing and plasticity of shoaling behavior in the zebrafish, Daniorerio. Anim Behav 74:1269–1275. https://doi.org/10.1016/j.anbehav.2007.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  110. Matthews M, Trevarrow B, Matthews J (2002) A virtual tour of the guide for zebrafish users. Lab Anim 31:34–40

    Google Scholar 

  111. Fowler LA, Williams MB, Dennis-Cornelius LN, Farmer S, Barry RJ, Powell ML, Watts SA (2019) Influence of commercial and laboratory diets on growth, body composition, and reproduction in the zebrafish Danio rerio. Zebrafish 16:508–521. https://doi.org/10.1089/zeb.2019.1742

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fernandes H, Peres H, Carvalho AP (2016) Dietary protein requirement during juvenile growth of zebrafish (Danio rerio). Zebrafish 13:548–556. https://doi.org/10.1089/zeb.2016.1303

    Article  CAS  PubMed  Google Scholar 

  113. Best J, Adatto I, Cockington J, James A, Lawrence C (2010) A novel method for rearing first-feeding larval zebrafish: polyculture with type L saltwater rotifers (Brachionus plicatilis). Zebrafish 7:289–295. https://doi.org/10.1089/zeb.2010.0667

    Article  PubMed  Google Scholar 

  114. Fowler LA, Williams MB, D’Abramo LR, Watts SA (2020) Zebrafish nutrition-moving forward. In: Cartner SE et al (eds) Zebrafish in biomedical research. Biology, husbandry, diseases and research applications. Academic Press, pp 379–401

    Google Scholar 

  115. Gemma micro, the complete nutrition for all life stages of zebrafish. www.zebrafish.skrettingusa.com

  116. Ramsay JM, Watral V, Schreck CB, Kent ML (2009) Pseudoloma neurophilia infections in zebrafish Danio rerio: effects of stress on survival, growth, and reproduction. Dis Aquat Org 88:69–84

    Article  Google Scholar 

  117. Ang P, Rattana AN, Goh CL (2000) Retrospective study of Mycobacterium marinum skin infection. Int J Derm 39:342–347

    Article  Google Scholar 

  118. Ostland VE, Watral V, Whipps CM, Austin FW, St-Hilaire S, Westerman ME, Kent ML (2008) Biochemical, molecular, and virulence characteristics of select Mycobacterium marinum isolates in hybrid striped bass Morone chrysops x M saxatilis and zebrafish Danio rerio. Dis Aquat Organ 79:107–118. https://doi.org/10.3354/dao01891

  119. Watral V, Kent ML (2007) Pathogenesis of Mycobacterium spp. in zebrafish (Danio rerio) from research facilities. Com Bioch Phy Tox Phar CBP 145(1):55–60. https://doi.org/10.1016/j.cbpc.2006.06.004

    Article  CAS  Google Scholar 

  120. Cipriano RC (2001) Aeromonas hydrophila and motile aeromonad 5 septicemias of fish. Fish Dis Leaflet 68

    Google Scholar 

  121. Pullium JK, Dillhay DL, Webb S (1999) High mortality in zebrafish (Danio rerio). Cont Top Lab Ani Sci 38:80–83

    Google Scholar 

  122. Hawke JP, Kent M, Rogge M, Baumgartner W, Wiles J, Shelley J, Peterson TS (2013) Edwadsiellosis caused by Edwardsiella ictaluri in laboratory populations of zebrafish Danio rerio. J Aquat Ani Hel 25:171–183. https://doi.org/10.1080/08997659.2013.782226

    Article  Google Scholar 

  123. Collymore C, Crim MJ, Lieggi C (2016) Recommendations for health monitoring and reporting for zebrafish research facilities. Zebrafish 13:138–148. https://doi.org/10.1089/zeb.2015.1210

    Article  Google Scholar 

  124. ZIRC (2015) Daily monitoring of fish morbidity and mortality SOP. https://zebrafish.org. Accessed 30 May 2020

  125. ZIRC (2010) Health monitoring protocols. https://zebrafish.org. Accessed 30 May 2020

  126. Garcia RL, Sanders GE (2011) Efficacy of cleaning and disinfection procedures in a zebrafish (Danio rerio) facility. J Am Assoc Lab Anim Sci 50:895–900

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sanders E (2020) Cleaning and disinfection of life systems. In: Cartner SE et al (eds) Zebrafish in biomedical research. Biology, husbandry, diseases and research applications. Academic Press, pp 299–307

    Google Scholar 

Download references

Acknowledgments

The author would like to express gratitude to Professor Mahendra Sonawane, Department of Biological Sciences, TIFR, Mumbai, for continuous encouragement and guidance. The cooperation of research scholars (Prof. Sonawane’s group) in managing the fish facility is highly appreciated. Sincere thanks to Mr. Christian Lawrence, Aquatic Resources Program, Boston Children’s Hospital, USA, for critical review, useful comments, and recommendations that improved the quality of this chapter. The author also would like to thank Dr. M A Pathan, ICAR-Central Institute of Fisheries Education, Mumbai, India, for sharing original photographs of recently collected wild zebrafish from the natural habitat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidas Kohale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohale, K. (2021). The Housing and Husbandry of Zebrafish (Danio rerio) in a Laboratory Environment. In: Nagarajan, P., Gudde, R., Srinivasan, R. (eds) Essentials of Laboratory Animal Science: Principles and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-16-0987-9_13

Download citation

Publish with us

Policies and ethics

Navigation