Hydrogen Storage Techniques for Stationary and Mobile Applications: A Review

  • Conference paper
  • First Online:
Recent Advances in Sustainable Technologies

Abstract

With the rapid increase of global warming and CO2 emissions from conventional fuels, the world is seeking an international commitment from all-dominating countries for an emission cut down of about 55–60% till 2050. Molecular hydrogen is the most-favored chemical fuel alternative for both stationary and mobile applications. Hydrogen is the most efficient energy carrier known to us with the highest heating value per mass, i.e., 120–142 MJ/kg of all chemical fuels. Hydrogen also has the highest gross calorific value being 141.7 MJ/kg significantly higher than petrol 46.4 MJ/kg and diesel 45.6 MJ/kg for 0 °C at 1 bar. The production of hydrogen gas is a challenge itself. Water being the only by-product of the energy generation and zero emissions, hydrogen is regenerative and eco friendly. Gravimetric density and volumetric density are crucial for stationary and mobile applications. In this paper, the storage methods reviewed were high-pressure cylinder (upto 800 bars) using different metals and lightweight composite materials, storage of hydrogen in a liquid state using cryogenic tanks at 21 K, storage of hydrogen using the metal–organic framework and solid materials, chemical storage using covalent and ionic compounds, storage using selective few metals which possess property to absorb hydrogen excessively in large amount, storage that uses nanostructured based metal hydrides and absorption of hydrogen using carbon-based materials like Graphene. Hydrogen can also be stored indirectly in reactive metals using metal hydrides and chemisorptive techniques in Li, Na, Al, or Zn and other alkali elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM, IPCC (2013) Summary for policymakers. In: Climate change 2013. Cambridge University Press, Cambridge

    Google Scholar 

  2. Argonne National Laboratory (2009) Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. U.S. Department of Energy, Oak Ridge

    Google Scholar 

  3. Singer S, Denruyter J-P, Yener D (2017) The energy report: 100% renewable energy by 2050. In: Towards 100% renewable energy. Springer, Cham

    Google Scholar 

  4. Saito S (2010) Role of nuclear energy to a future society of shortage of energy resources and global warming. J Nucl Mater 398:1–9

    Article  Google Scholar 

  5. SAE International (2015) SAE J2600 compressed hydrogen surface vehicle fueling connection devices

    Google Scholar 

  6. Hua T, Ahluwalia R, Peng J-K, Kromer M, Lasher S, McKenney K, Law K, Sinha J (2010) Technical assessment of compressed hydrogen storage tank systems for automotive applications. Office of Scientific and Technical Information (OSTI), Oak Ridge

    Google Scholar 

  7. Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sustain Energy Rev 16:3024–3033

    Article  Google Scholar 

  8. Mizuno M, Ogami N, Negishi Y, Katahira N (2005) High pressure hydrogen tank for FCHV. JSAE Paper No. 84-05, pp 13–16

    Google Scholar 

  9. Yamashita A, Kondo M, Goto S, Ogami N (2015) Development of high-pressure hydrogen storage system for the Toyota “Mirai”. SAE technical paper 2015-01-1169. https://doi.org/10.4271/2015-01-1169

  10. Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/fuelcells/physical-hydrogen-storage

  11. Millange F, Serre C, Guillou N, Ferey G, Walton RI (2008) Structural effects of solvents on the breathing of metal–organic frameworks: an in situ diffraction study. Angew Chem Int Ed 47:4100

    Google Scholar 

  12. He Y, Chen F, Li B, Qian G, Zhou W, Chen B (2018) Porous metal-organic frameworks for fuel storage. Coord Chem Rev 373:167–198

    Article  Google Scholar 

  13. Yan Y, Yang S, Blake AJ, Lewis W, Poirier E, Barnett SA, Champness NR, Schröder M (2011) A mesoporous metal-organic framework constructed from a nanosized C 3-symmetric linker and [Cu 24 (isophthalate) 24] cuboctahedra. Chem Commun 47:9995

    Google Scholar 

  14. Yuan D, Zhao D, Sun D, Zhou H-C (2010) An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49:5357

    Google Scholar 

  15. Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal–organic frameworks. Chem Rev 112:782–835

    Google Scholar 

  16. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM (2001) Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:1021

    Article  Google Scholar 

  17. Züttel A, Borgschulte A, Schlapbach L (2011) Hydrogen as a future energy carrier. Wiley, Hoboken, p 441

    Google Scholar 

  18. Saha D, Wei Z, Deng S (2008) Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177. Int J Hydrogen Energy 33:7479–7488

    Article  Google Scholar 

  19. Choi J-S, Son W-J, Kim J, Ahn W-S (2008) Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater 116:727–731

    Article  Google Scholar 

  20. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646

    Google Scholar 

  21. Sakintuna B, Lamari-Darkrimb F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121

    Google Scholar 

  22. Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396

    Article  Google Scholar 

  23. Li ZP, Liu BH, Arai K, Suda S (2003) A fuel cell development for using borohydrides as the fuel. J Electrochem Soc 150:A868–A872

    Article  Google Scholar 

  24. Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408

    Article  Google Scholar 

  25. Schlapbach L, Züttel A (2002) Hydrogen-storage materials for mobile applications. Nature 414:353

    Article  Google Scholar 

  26. Züttel A, Wenger P, Rensch S, Sudan P, Mauron P, Emmenegger C (2003) LiBH4 hydrogen storage and distribution systems. J Power Sources 5194:1–7

    Google Scholar 

  27. Kapelewski MT, Runčevski T, Tarver JD, Jiang HZH, Hurst KE, Parilla PA, Ayala A, Gennett T, FitzGerald SA, Brown CM, Long JR (2018) Chemistry of materials. Chem Mater 30:8179−8189

    Google Scholar 

  28. Klaus Y (1998) Complex transition metal hydrides. CHIMIA Int J Chem 52:613–619

    Google Scholar 

  29. Zttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172. https://doi.org/10.1007/s00114-004-0516-x

  30. Züttel A, Sudan P, Mauron P, Kyiobaiashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27:203–212

    Article  Google Scholar 

  31. Sljivancanin Z, Rauls E, Hornekaer L, Xu W, Besenbacher F, Hammer B (2009) Extended atomic hydrogen dimer configurations on the graphite(0001) surface. J Chem Phys 131:084706

    Article  Google Scholar 

  32. Ataca C, Aktürk E, Ciraci S, Ustunel H (2008) High-capacity hydrogen storage by metallized graphene. Appl Phys Lett 93:043123

    Google Scholar 

  33. Tozzini V, Pellegrini V (2013) Prospects for hydrogen storage in graphene. Phys Chem Chem Phys 15:80

    Google Scholar 

  34. Fakioğlu E, Yürüm Y, Nejat Veziroğlu T (2004) A review of hydrogen storage systems based on boron and its compounds. Int J Hydrogen Energy 29:1371–1376

    Google Scholar 

  35. Durbin D, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrogen Energy 38:14595–14617

    Article  Google Scholar 

  36. Thomas C (2009) Fuel cell and battery electric vehicles compared. Int J Hydrogen Energy 34:6005–6020

    Article  Google Scholar 

  37. Momen G, Hermosilla G, Michau A, Pons M, Firdaous M, Marty P, Hassouni K (2009) Experimental and numerical investigation of the thermal effects during hydrogen charging in packed bed storage tank. Int J Heat Mass Transf 52:1495–1503

    Article  Google Scholar 

  38. Amos WA (1998) Costs of storing and transporting hydrogen. National Technical Information Service (NTIS), Springfield

    Google Scholar 

  39. Ahluwalia R, Peng J, Roh H, Hua T, Houchins C, James B (2018) Supercritical cryo-compressed hydrogen storage for fuel cell electric buses. Int J Hydrogen Energy 43:10215–10231

    Article  Google Scholar 

  40. Rivard E, Trudeau M, Zaghib K (2019) Hydrogen storage for mobility: a review. Materials 12:1973. https://doi.org/10.3390/ma12121973

  41. Ma Y, **a Y, Zhao M, Wang R, Mei L (2001) Effective hydrogen storage in single-wall carbon nanotubes. Phys Rev B 63:115422/1–115422/6

    Google Scholar 

  42. Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 4:2767–2773

    Article  Google Scholar 

  43. Sun T, **ao F, Tang R, Wang Y, Dong H, Li Z, Wang H, Liuzhang O, Zhu M (2014) Hydrogen storageperformance of nano Ni decorated LiBH4 on activated carbon prepared through the organic solvent. J Alloy Compd 612:287–292

    Article  Google Scholar 

  44. Ming Y, Purewal J, Yang J, Xu C, Veenstra M, Gaab M, Müller U, Siegel DJ (2016) Stability of MOF-5 in a hydrogen gas environment containing fueling station impurities. Int J Hydrogen Energy 41:9374–9382

    Article  Google Scholar 

  45. Meng Z, Lu R, Rao D, Kan E, **. Int J Hydrogen Energy 38:9811–9818

    Article  Google Scholar 

  46. Gadzikwa T, Farha OK, Mulfort KL, Hupp JT, Nguyen ST (2009) A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration. Chem Commun 45:3720

    Article  Google Scholar 

  47. Chen B, Ockwig NW, Millward AR, Contreras DS, Yaghi OM (2005) High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew Chem Int Ed 44:4745

    Google Scholar 

  48. Arellano JA, Molina LM, Rubio A, López MJ, Alonso JA (2002) Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes. J Chem Phys 117:2281

    Google Scholar 

  49. Yang SH, Lin X, Dailly A, Blake AJ, Hubberstey P, Champness NR, Schröder M (2009) Enhancement of H2 adsorption in coordination framework materials by use of ligand curvature. Chem Eur J 15:4829

    Google Scholar 

  50. Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR (2011) Hydrogen storage properties and neutron scattering studies of Mg 2 (dobdc)—a metal–organic framework with open Mg 2+ adsorption sites. Chem Commun 47:1157

    Article  Google Scholar 

  51. Kim TK, Suh MP (2011) Selective CO2 adsorption in a flexible non-interpenetrated metal–organic framework. Chem Commun 47:4258

    Article  Google Scholar 

  52. Mavrandonakis A, Klopper WJ (2008) First-principles study of single and multiple dihydrogen interaction with lithium containing benzene molecules. Phys Chem C 112:11580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dafedar, A.A., Verma, S.S., Yadav, A. (2021). Hydrogen Storage Techniques for Stationary and Mobile Applications: A Review. In: Jha, K., Gulati, P., Tripathi, U.K. (eds) Recent Advances in Sustainable Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0976-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0976-3_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0975-6

  • Online ISBN: 978-981-16-0976-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation