Global Development in Soil Science Research: Agriculture Sensors and Technologies

  • Chapter
  • First Online:
Soil Science: Fundamentals to Recent Advances

Abstract

The importance of soil resource to global food supply and climate change mitigation by carbon sequestration are the two most important factors for the constantly growing interest in global soil research. In view of its growing recognition as an important natural resource, the United Nations has declared 2015 as the “International Year of Soils” in the 68th Session of its General Assembly. With population increase, world hunger, water stress, and climate change, global crop production are continuously under stress to meet future demands. The global crop production will have to be doubled by 2050 to meet the population’s projected demands. Thus, the pressure on soil resources is bound to increase and they need to be managed wisely. “If you can’t measure it, you can’t manage it.” Assessing soil data is essential in monitoring soil attributes, evaluating changes related to soil quality, judging soil resources, and improving crop yields. The conventional soil analysis can provide accurate measurements for a limited number of samples due to the cost, time, and labor analysis, which leads to inadequate spatial field data and restricts the resolution of the prescription maps. The development of soil sensors and technologies can improve agricultural systems by providing a rapid, in situ, and innovative characterization and measurement of soil properties over current methods. In this chapter, we will explore the agriculture sensors and technologies used in precision agriculture, agribusiness and discuss how these tools can optimize crops and increase the world’s capacity to feed future populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AI:

Artificial Intelligence

Ca:

Calcium

CEC:

Cation exchange capacity

FDR:

Frequency-domain reflectometry

GPS:

Global positioning system

K:

Potassium

Mg:

Magnesium

N:

Nitrogen

Na:

Sodium

P:

Phosphorus

SOC:

Soil organic carbon

SOM:

Soil organic matter

SWP:

Soil water potential

TDR:

Time-domain reflectometry

VFR:

Variable fertilizer rate

Vis-NIR:

Visible-Near infrared

References

  • Abit MJM, Brian Arnall D, Phillips SB (2018) Environmental implications of precision agriculture. In: Precision agriculture basics, pp 209–220. https://doi.org/10.2134/precisionagbasics.2017.0035

  • Abuelgasim A, Ammad R (2019) Map** soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens Appl Soc Environ 13:415–425

    Google Scholar 

  • Adamchuk VI, Rossel RAV (2010) Development of on-the-go proximal soil sensor systems. Pages 15–28 in proximal soil sensing, 1st edn. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8859-8_2

    Book  Google Scholar 

  • Adamchuk VI, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44:71–91. https://doi.org/10.1016/j.compag.2004.03.002

    Article  Google Scholar 

  • Adamchuk VI, Lund ED, Sethuramasamyraja B, Morgan MT, Dobermann A, Marx DB (2005) Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Comput Electron Agric 48:272–294

    Article  Google Scholar 

  • Alaoui A, Diserens E (2018) Map** soil compaction – a review. Curr Opin Environ Sci Heal 5:60–66. https://doi.org/10.1016/j.coesh.2018.05.003

    Article  Google Scholar 

  • ASABE Standards (2006) ASAE S313.3: soil cone penetrometer and ASAE S358.2: moisture measurement—forages. St Joseph

    Google Scholar 

  • Bittelli M, Flury M (2009) Errors in water retention curves determined with pressure plates. SSSAJ 73:1453–1460. Internal-pdf://228.60.152.94/errors in estimating water retention curves.pdf

    Article  CAS  Google Scholar 

  • Brady N, Weil R (1996) Chapter 9 soil reaction: acidity and alkalinity. The nature and properties of soils, 11th edn. Pearson, Upper Saddle River

    Google Scholar 

  • Brady NC, Weil RR, Weil RR (2008) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Burek P, Mubareka S, Rojas R, de Roo A, Bianchi A, Baranzelli C, Lavalle C, Vandecasteele I (2012) Evaluation of the effectiveness of natural water retention measures. JRC scientific and policy report, European Union, Brussels

    Google Scholar 

  • CBINSIGHTS (2017) AI, robotics, and the future of precision agriculture. https://www.cbinsights.com/research/ai-robotics-agriculture-tech-startups-future/

  • Clement BR, Stombaugh TS (2000) Continuously-measuring soil compaction sensor development. In: 2000 ASAE annual international meeting, Milwaukee, Wisconsin, USA. American Society of Agricultural Engineers, St Joseph, pp 1–5

    Google Scholar 

  • Christy CD (2008) Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy. Comput Electron Agric 61:10–19. https://doi.org/10.1016/j.compag.2007.02.010

    Article  Google Scholar 

  • Collentine D, Futter MN (2018) Realising the potential of natural water retention measures in catchment flood management: trade-offs and matching interests. Flood Risk Manag 11:76–84. Internal-pdf://0719885376/Collentine_et_al-2018-Journal_of_Flood_Risk_Ma.pdf

    Article  Google Scholar 

  • Dean JA (1995) Analytical chemistry handbook. McGraw-Hill, New York

    Google Scholar 

  • Dobermann A, Blackmore S, Cook SE, Adamchuk VI (2004) Precision farming: challenges and future directions. In: Proceedings of the 4th international crop science congress

    Google Scholar 

  • El Jazouli A, Barakat A, Ghafiri A, El Moutaki S, Ettaqy A, Khellouk R (2017) Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geosci Lett 4:1–12. https://doi.org/10.1186/s40562-017-0091-6

    Article  Google Scholar 

  • Felton WL, McCloy K (1992) Spot spraying. J Agric Eng 73:9–12

    Google Scholar 

  • Ganjegunte GK, Sheng Z, Clark JA (2012) Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Appl Water Sci 2:119–125. Internal-pdf://121.226.169.226/Ganjegunte2012_Article_EvaluatingTheAccuracyOf.pdf

    Article  Google Scholar 

  • Gerhards II RSMTCRSKWWMM (1999) Results of a four-year study on site-specific herbicide application. In: Precision agriculture ‘99, part 1 and part 2. Papers presented at the 2nd European conference on precision agriculture, Odense, Denmark, 11-15 July 1999. Sheffield Academic Press, Sheffield, pp 689–697

    Google Scholar 

  • Government of Canada (2020). Soil and land. Canada. https://www.agr.gc.ca/eng/agriculture-and-climate/agricultural-practices/soil-and-land/soil-salinization-indicator/?id=1462912470880

  • Graeub BE, Chappell MJ, Wittman H, Ledermann S, Kerr RB, Gemmill-Herren B (2016) The state of family farms in the world. World Dev 87:1–15. https://doi.org/10.1016/j.worlddev.2015.05.012

    Article  Google Scholar 

  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68:1323–1331. https://doi.org/10.1002/ps.3374

    Article  CAS  PubMed  Google Scholar 

  • Grift TE, Tekeste MZ, Raper RL (2005) Acoustic compaction layer detection. Trans Am Soc Agric Eng 48:1723–1730. https://doi.org/10.13031/2013.9682

    Article  Google Scholar 

  • Hedley C, Yule I, Badbury S (2010) Analysis of potential benefits of precision irrigation for variable soils at five pastoral and arable production sites in New Zealand [DVD]. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. In Austria

    Google Scholar 

  • Hemmat A, Adamchuk VI (2008) Sensor systems for measuring soil compaction: review and analysis. Comput Electron Agric 63:89–103. https://doi.org/10.1016/j.compag.2008.03.001

    Article  Google Scholar 

  • Hoskinson RL, Hess JR, Fink RK (1999) A decision support system for optimum use of fertilizers. In: 2nd European conference on precision agriculture. Idaho National Engineering and Environmental Laboratory, Idaho Falls, pp 1–11

    Google Scholar 

  • Hunt ER Jr, Daughtry CST (2018) What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int J Remote Sens 39:5345–5376

    Article  Google Scholar 

  • Jaiswal S, Bhadoria V, Agrawal A, Ahuja H (2019) Internet of things (Iot) for smart agriculture and farming in develo** nations. Int J Sci Technol Res 8:1049–1058

    Google Scholar 

  • Kanjilal D, Singh D, Reddy R, Mathew J (2014) Smart farm: extending automation to the farm level. Int J Sci Technol Res 3:109–113

    Google Scholar 

  • Ledieu J, De Ridder P, De Clerck P, Dautrebande S (1986) A method of measuring soil moisture by time-domain reflectometry. J Hydrol 88:319–328

    Article  Google Scholar 

  • Liew OW, Chong PCJ, Li B, Asundi AK (2008) Signature optical cues: emerging technologies for monitoring plant health. Sensors 8:3205–3239

    Article  CAS  Google Scholar 

  • Liu W, Gaultney LD, Morgan MT (1993) Soil Texture Detection Using Acoustical Methods. ASAE Meeting (Michigan, USA) Paper No. 93–1015

    Google Scholar 

  • Lowder SK, Skoet J, Raney T (2016) The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev 87:6–29. https://doi.org/10.1016/j.worlddev.2015.10.041

    Article  Google Scholar 

  • Madhumitha R, Priyadharshini S, Selvan KT, Anandhi V (2020) A study on IoT-based sensors for precision agriculture. Int J Farm Sci 10:81–84. https://doi.org/10.5958/2250-0499.2020.00018.x

    Article  Google Scholar 

  • Malazian A, Hartsough P, Kamai T, Campbell GS, Cobos DR, Hopmans JW (2011) Evaluation of MPS-1 soil water potential sensor. J Hydrol 402:126–134

    Article  Google Scholar 

  • Maohua W (2001) Possible adoption of precision agriculture for develo** countries at the threshold of the new millennium. Comput Electron Agric 30:45–50. https://doi.org/10.1016/S0168-1699(00)00154-X

    Article  Google Scholar 

  • Memon M, Memon KS, Akhtar MS, Stüben D (2009) Characterization and quantification of iron oxides occurring in low concentration in soils. Commun Soil Sci Plant Anal 40:162–178

    Article  CAS  Google Scholar 

  • Mouazen AM, De Baerdemaeker J, Ramon H (2005) Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Tillage Res 80:171–183. https://doi.org/10.1016/j.still.2004.03.022

    Article  Google Scholar 

  • Nagamori M, Watanabe Y, Hase T, Kurata Y, Ono Y, Kawamura K (2007) A simple and convenient empirical survey method with a soil electrical conductivity meter for incineration residue-derived soil contamination. J Mater Cycles Waste Manag 9:90–98

    Article  CAS  Google Scholar 

  • Norton GW, Swinton SM (2000) Precision agriculture: global prospects and environmental implications. In: 2000 Conference, August 13–18, 2000. International Association of Agricultural Economists, Berlin

    Google Scholar 

  • Puri V, Nayyar A, Raja L (2017) Agriculture drones: a modern breakthrough in precision agriculture. J Stat Manag Syst 20:507–518

    Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  Google Scholar 

  • Sadler EJ, Evans RG, Stone KC, Camp CR (2005) Opportunities for conservation with precision irrigation. J Soil Water Conserv 60:371–379

    Google Scholar 

  • Saleem SR, Zaman QU, Schumann AW, Madani A, Chang YK, Farooque AA (2014) Impact of variable rate fertilization on nutrients losses in surface runoff for wild blueberry fields. Appl Eng Agric 30:179–185. https://doi.org/10.13031/aea.30.10346

    Article  Google Scholar 

  • Sawyer JE (1994) Concepts of variable rate technology with considerations for fertilizer application. J Prod Agric 7:195–201

    Article  Google Scholar 

  • Say SM, Keskin M, Sehri M, Sekerli YE (2018) Adoption of precision agriculture technologies in developed and develo** countries. Online J Sci Technol 8(1):7–15

    Google Scholar 

  • Schirrmann M, Gebbers R, Kramer E, Seidel J (2011) Soil pH map** with an on-the-go sensor. Sensors 11:573–598

    Article  CAS  Google Scholar 

  • Schmerler J, Jurschik P (1997) Technological and economic results of precision farming from a 7,200 hectares farm in East Germany. BIOS Scientific Publishers, pp 991–997

    Google Scholar 

  • Sepuru TK, Dube T (2018) An appraisal on the progress of remote sensing applications in soil erosion map** and monitoring. Remote Sens Appl Soc Environ 9:1–9. https://doi.org/10.1016/j.rsase.2017.10.005

    Article  Google Scholar 

  • Shibusawa S, Imade Anom SW, Sato S, Sasao A, Hirako S (2001) Soil map** using the realtime soil spectrophotometer. In: Third European conference on precision agriculture, BIOS, pp 497–508

    Google Scholar 

  • Shonk JL, Gaultney LD, Schulze DG, Van Scoyoc, GE (1991) Spectroscopic sensing of soil organic matter content. Trans Am Soc Agric Eng 34:1978–1984. https://doi.org/10.13031/2013.31826

    Article  Google Scholar 

  • Shoshany M, Goldshleger N, Chudnovsky A (2013) Monitoring of agricultural soil degradation by remote-sensing methods: a review. Int J Remote Sens 34:6152–6181. https://doi.org/10.1080/01431161.2013.793872

    Article  Google Scholar 

  • Sinfield JV, Fagerman D, Colic O (2009) Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Comput. Electron. Agric. 70: 1–18. Internal-pdf://0719885381/2010_-_Joseph_V_Sinfield_-_Evaluationofsensing.pdf

    Google Scholar 

  • Stelzer RS, Lamberti GA (2001) Effects of N: P ratio and total nutrient concentration on stream periphyton community structure, biomass, and elemental composition. Limnol Oceanogr 46:356–367

    Article  Google Scholar 

  • Sudduth KA, Hummel JW (1993) Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Trans Am Soc Agric Eng 36:1571–1582. https://doi.org/10.13031/2013.28498

    Article  Google Scholar 

  • Sui R, Thomasson JA, Hanks J, Wooten J (2008) Ground-based sensing system for weed map** in cotton. Comput Electron Agric 60:31–38. https://doi.org/10.1016/j.compag.2007.06.002

    Article  Google Scholar 

  • Teng H, Viscarra Rossel RA, Shi Z, Behrens T, Chappell A, Bui E (2016) Assimilating satellite imagery and visible-near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ Model Softw 77:56–167. https://doi.org/10.1016/j.envsoft.2015.11.024

    Article  Google Scholar 

  • Thrikawala S, Weersink A, Fox G, Kachanoski G (1999) Economic feasibility of variable-rate Technology for Nitrogen on corn. Am J Agric Econ 81:914–927. https://doi.org/10.2307/1244334

    Article  Google Scholar 

  • Timmermann C, Gerhards R, Kühbauch W (2003) The economic impact of site-specific weed control. Precis Agric 4:249–260. https://doi.org/10.1023/A:1024988022674

    Article  Google Scholar 

  • Valin H, Sands RD, van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Mason-D’Croz D, Paltsev S, Rolinski S, Tabeau A, van Meijl H, von Lampe M, Willenbockel D (2014) The future of food demand: understanding differences in global economic models. Agric Econ (U K) 45:51–67. https://doi.org/10.1111/agec.12089

    Article  Google Scholar 

  • Veldkamp E, O’Brien JJ (2000) Calibration of a frequency domain reflectometry sensor for humid tropical soils of volcanic origin. Soil Sci Soc Am J 64:1549–1553

    Article  CAS  Google Scholar 

  • Veloso AJ, Cheng XR, Kerman K (2012) Electrochemical biosensors for medical applications. In: Biosensors for medical applications. Elsevier, Amsterdam, pp 3–40

    Chapter  Google Scholar 

  • Viscarra Rossel RA, Fouad Y, Walter C (2008) Using a digital camera to measure soil organic carbon and iron contents. Biosyst Eng 100:149–15

    Article  Google Scholar 

  • Vrieling A, de Jong SM, Sterk G, Rodrigues SC (2008) Timing of erosion and satellite data: a multi-resolution approach to soil erosion risk map**. Int J Appl Earth Obs Geoinf 10:267–281. https://doi.org/10.1016/j.jag.2007.10.009

    Article  Google Scholar 

  • Wang N, Zhang N, Dowell FE, Sun Y, Peterson DE (2001) Design of an optical weed sensor using plant spectral characteristics. Trans Am Soc Agric Eng 44:409–419

    Article  Google Scholar 

  • Zeitoun R, Biswas A (2020) Instant and mobile electrochemical quantification of inorganic phosphorus in soil extracts. J Electrochem Soc 13:693–712

    Google Scholar 

  • Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13:693–712

    Article  CAS  Google Scholar 

  • Žížala D, Minarík R, Zádorová T (2019) Soil organic carbon map** using multispectral remote sensing data: prediction ability of data with different spatial and spectral resolutions. Remote Sens 11:2947. https://doi.org/10.3390/rs11242947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeitoun, R., Chaudhry, H., Vasava, H.B., Biswas, A. (2021). Global Development in Soil Science Research: Agriculture Sensors and Technologies. In: Rakshit, A., Singh, S., Abhilash, P., Biswas, A. (eds) Soil Science: Fundamentals to Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_29

Download citation

Publish with us

Policies and ethics

Navigation