Seed Storage Proteins and Amino Acids Synthetic Pathways and Their Regulation in Cereals with Reference to Biologically and Nutritionally Important Proteins and Bioactive Peptides in Millets

  • Chapter
  • First Online:
Millets and Millet Technology

Abstract

Although the food systems in develo** countries have changed dramatically since the green revolution, malnutrition still remains a challenge and is now known to include the concurrent dimensions of under-nourishment and micronutrient deficiency as a serious issue in develo** as well as developed countries. An average cereal protein value of 10% will give us the total cereal protein production of approximately 17 million tons annually. The accumulation of seed protein is a complicated characteristic and seed storage proteins are proteins that considerably accumulate in develo** seed, whose principal role is to behave as the nitrogen, carbon, and sulfur storage reserve. These proteins are mobilized quickly during the germination of seeds and are the principal cause of nitrogen reduction to increasing plantings. In particular, the enzymatic functions of seed storage proteins are not known although proteins are structurally distinct in storage from various crops, they all have certain prevalent features. Plant storage proteins may be categorized into two categories; proteins from seed storage (SSPs) and plant storage (VSPs). SSPs are a group of proteins that accumulate in seeds at high concentrations in the late stages of seed development, whereas VSPs are protein accumulation in vegetative tissues, such as roots and tubers, based on plant species. SSPs are depleted during germination, and the subsequent amino acids are used as a food source by the growing seedlings. The most popular proteins in crops are the SSPs and the most commonly consumed plant proteins by human beings are crop proteins. Millets are considered as an enriched source of many essential amino acids derived from many quality proteins. According to World Health Organization, the proteins harboring more than 40% essential amino acids are called quality proteins and upon digestion and hydrolytic cleavage, several bioactive peptides having multiple health attributes are generated. In this chapter, we have briefly described about the proteins and peptides and their role in nutritional improvement present in millet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi S, Yamanaka T, Hayashi S, Kimura Y, Matsuno R, Yokogoshi H (1992) Preparation of peptide mixture with high Fischer ratio from protein hydrolysate by adsorption on activated carbon. Bioseparation 3(4):227–232

    CAS  PubMed  Google Scholar 

  • Agrawal H, Joshi R, Gupta M (2016) Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem 204:365–372. https://doi.org/10.1016/j.foodchem.2016.02.127

    Article  CAS  PubMed  Google Scholar 

  • Agrawal H, Joshi R, Gupta M (2017) Isolation and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum. LWT 84:608–616. https://doi.org/10.1016/j.lwt.2017.06.036

    Article  CAS  Google Scholar 

  • Agrawal H, Joshi R, Gupta M (2019) Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Res Int 120:697–707. https://doi.org/10.1016/j.foodres.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  • Albani D, Hammond-Kosack MC, Smith C, Conlan C, Colot C, Holdsworth V, Bevan MW (1997) The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell 9:171–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aluko RE, Monu E (2003) Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci 68(4):1254–1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x

    Article  CAS  Google Scholar 

  • Amadou I, Le GW, Amza T, Sun J, Shi YH (2013) Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int 51(1):422–428. https://doi.org/10.1016/j.foodres.2012.12.045

    Article  CAS  Google Scholar 

  • Bietz JA (1982) Cereal prolamin evolution and homology revealed by sequenc analysis. Biochem Genet 20:1039–1053

    Article  CAS  PubMed  Google Scholar 

  • Bisht A, Thapliyal M, Singh A (2016) Screening and isolation of antibacterial proteins/peptides from seeds of millets. Int J Curr Pharm Res 8(3):96–99. https://doi.org/10.22159/ijcpr.2016v8i4.15271

    Article  CAS  Google Scholar 

  • Bogard M, Jourdan M, Allard V, Martre P, Perretant MR, Ravel C et al (2011) Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. J Exp Bot 62:3621–3636

    Article  CAS  PubMed  Google Scholar 

  • Camargo F, Cortez DAG, Ueda-Nakamura T, Nakamura CV, Dias Filho BP (2008) Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15(3):202–208. https://doi.org/10.1016/j.phymed.2007.07.059

    Article  CAS  Google Scholar 

  • Carbajosa J, Moose V, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein promoters and interacts with the basic leucine zipper transcriptional activator Qpaque2. Proc Natl Acad Sci 94(14):7685–7690

    Article  Google Scholar 

  • Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceravolo GS, Montezano AC, Jordão MT, Akamine EH, Costa TJ, Takano AP, Fernandes DC, Barreto-Chaves ML, Laurindo FR, Tostes RC et al (2014) An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies. PLoS One 9(11):e111117. https://doi.org/10.1371/journal.pone.0111117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Jahandideh F, Davidge ST, Wu J (2018) Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent insulin resistance in 3T3-F442A preadipocytes. J Agric Food Chem 66(39):10179–10187. https://doi.org/10.1021/acs.jafc.8b02051

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Duan W, Ren X, Wang C, Pan Z, Diao X, Shen Q (2017) Effect of foxtail millet protein hydrolysates on lowering blood pressure in spontaneously hypertensive rats. Eur J Nutr 56(6):2129–2138. https://doi.org/10.1007/s00394-016-1252-7

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, Peng B, Wu B, Li Y, Zhao D, Gao G, Zhang Q, **ao J, Li X, Wang G, He Y (2018) Genetic basis of variation in rice seed storage protein (albumin, globulin, prolamin, and glutelin) content revealed by genome-wide association analysis. Front Plant Sci 9:612

    Article  PubMed  PubMed Central  Google Scholar 

  • Chinchole M, Pathak RK, Singh UM, Kumar A (2017) Molecular characterization of EcCIPK24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech 7:267. https://doi.org/10.1007/s13205-017-0874-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 109–139

    Chapter  Google Scholar 

  • Crouch ML, Tenbarge KM, Simon AE, Ferl R (1983) cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Mol Appl Genet 2:273–283

    CAS  PubMed  Google Scholar 

  • Cuddeford D (1995) Oats for animal feed. In: Welch RW (ed) The oat crop: production and utilization. Chapman & Hall, London, pp 321–368

    Chapter  Google Scholar 

  • Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol 164(3):354–372. https://doi.org/10.1111/aab.12108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devoto A, Nieto-Rostro M, **e D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin–ligase complex in Arabidopsis. Plant J 32:457–466

    Article  CAS  PubMed  Google Scholar 

  • Dias AMGC, dos Santos R, Iranzo O, Roque ACA (2016) Affinity adsorbents for proline-rich peptide sequences: a new role for WW domains. RSC Adv 6(73):68979–68988. https://doi.org/10.1039/C6RA10900D

    Article  CAS  Google Scholar 

  • Diaz I, Vicente-Carbajosa J, Abraham Z, Martinez M, Isabel-La Moneda I, Carbonero P (2002) The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. Plant J 29:453–464

    Article  CAS  PubMed  Google Scholar 

  • Diaz I, Martinez M, Isabel-LaMoneda I, Rubio-Somoza I, Carbonero P (2005) The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J 42:652–662

    Article  CAS  PubMed  Google Scholar 

  • Doll H (1977) Genetic diversity in plants. In: Muhammed A et al (eds) 8. 978-1-4684-2888-9

    Google Scholar 

  • Doyen A, Husson E, Bazinet L (2013) Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides. Food Chem 136:1193–1202

    Article  CAS  PubMed  Google Scholar 

  • Dziuba M, Dziuba B (2010) In silico analysis of bioactive peptides. In: Mine Y, Li-Chan E, Jiang B (eds) Bioactive proteins and peptides as functional foods and nutraceuticals. Wiley-Blackwell, Oxford, UK, pp 325–340

    Chapter  Google Scholar 

  • Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26(11):2064–2073

    Article  CAS  PubMed  Google Scholar 

  • Erdos EG, Tan F, Skidgel RA (2010) Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function. Hypertension 55(2):214–220. https://doi.org/10.1161/HYPERTENSIONAHA.109.144600

    Article  CAS  PubMed  Google Scholar 

  • Esen A, Bietz JA, Pauls JW, Wall JS (1985) Isolation and characterization of a methionine-rich protein from maize endosperm. Cereal Sci 3:143–152

    Article  CAS  Google Scholar 

  • Fan H, Liao W, Wu J (2019) Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. J Food Biochem 43(1):e12572. https://doi.org/10.1111/jfbc.12572

    Article  CAS  PubMed  Google Scholar 

  • Fanzo J (2015) Ethical issues for human nutrition in the context of global food security and sustainable development. Glob Food Secur 7(2015):15–23

    Article  Google Scholar 

  • Feng LN, Lu DQ, Bei JX, Chen JL, Liu Y, Zhang Y, Liu XC, Meng ZN, Wang L, Lin HR (2009) Molecular cloning and functional analysis of polymeric immunoglobulin receptor gene in orange-spotted grouper (Epinephelus coioides) Comp Biochem. Physiol B Biochem Mol Biol 154:282–289

    Article  CAS  Google Scholar 

  • Firdaous L, Dhulster P, Amiot J, Gaudreau A, Lecouturier D, Kapel R, Lutin F, Vezina LP, Bazinet L (2009) Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes. J Membr Sci 329(1–2):60–67. https://doi.org/10.1016/j.mem-sci.2008.12.012

    Article  CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13:7327–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2002) Photosynthetic nitrogen assimilation: inter-pathway control and signaling. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism, Advances in photosynthesis and respiration, vol 12. Springer, Dordrecht. https://doi.org/10.1007/0-306-48138-3_1

    Chapter  Google Scholar 

  • Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotechnol Biochem 67(8):1636–1642. https://doi.org/10.1271/bbb.67.1636

    Article  CAS  PubMed  Google Scholar 

  • Fukushima D (1991) Recent progress of soybean protein foods: chemistry, technology and nutrition. Food Rev Int 7:323–351

    Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222. https://doi.org/10.1111/pbi.12025

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Sharma K, Majumder K (2019) Chapter 4: Food-derived bioactive peptides and their role in ameliorating hypertension and associated cardiovascular diseases. In: Toldra F (ed) Advances in food and nutrition research, vol 89. Academic, New York, pp 165–207

    Google Scholar 

  • Geervani P, Eggum BO (1989) Nutrient composition and protein quality of minor millets. Plant Foods Hum Nutr 39(2):201–208. https://doi.org/10.1007/BF01091900

    Article  CAS  PubMed  Google Scholar 

  • Gobbetti M, Minervini F, Rizzello CG (2007) Bioactive peptides in dairy products. In: Hui YH (ed) Handbook of food products manufacturing. Wiley, Hoboken, NJ, pp 489–517

    Chapter  Google Scholar 

  • Goel A, Gaur VS, Arora S, Gupta S, Kumar A (2012) In silico analysis of expression data for identification of genes involved in spatial accumulation of calcium in develo** seeds of rice. OMICS J Integrat Biol 16(7–8):402–413

    Google Scholar 

  • Gopalan C, Rama Sastri BV, Balasubramanian SC (1989) Nutritive value of Indian foods. Book; Government Publication.

    Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157. https://doi.org/10.1042/BJ20041931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SM, Arora S, Mirza N, Pande A, Lata C, Puranik S et al (2017) Finger millet: a “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front Plant Sci 8:643. https://doi.org/10.3389/fpls.2017.00643

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Pathak RK, Gupta SM, Gaur VS, Singh NK, Kumar A (2018) Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in develo** spikes of Eleusine coracana L. 3 Biotech 8(2):82

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajfathalian M, Ghelichi S, Garcıa-Moreno PJ, Moltke Sørensen AD, Jacobsen C (2018) Peptides: production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 58(18):3097–3129. https://doi.org/10.1080/10408398.2017.1352564

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94(3):323–332. https://doi.org/10.1093/aob/mch156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18(2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wu M, Hao L, Yi H (2018) Sulfur dioxide derivatives alleviate cadmium toxicity by enhancing antioxidant defence and reducing Cd(2þ) uptake and translocation in foxtail millet seedlings. Ecotoxicol Environ Saf 157:207–215. https://doi.org/10.1016/j.ecoenv.2018.03.084

    Article  CAS  PubMed  Google Scholar 

  • Helm CV, DeFrancisco A, Gaziola SA, Fornazier RF, Pompeu GB, Azevedo RA (2004) Hull-less barley varieties: storage proteins and amino acid distribution in relation to nutritional quality. Food Biotechnol 18:327–341

    Article  CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442. https://doi.org/10.1104/pp.104.046490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. https://doi.org/10.1186/s12864-017-3850-z

  • Kawakatsu T, Takaiwa F (2010) Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol J 8:939–953

    Article  CAS  PubMed  Google Scholar 

  • Koyama M, Naramoto K, Nakajima T, Aoyama T, Watanabe M, Nakamura K (2013) Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. J Agric Food Chem 61(12):3013–3021. https://doi.org/10.1021/jf305157y

    Article  CAS  PubMed  Google Scholar 

  • Kriz AL (1989) Characterization of embryo globulins encoded by the maize Glb genes. Biochem Genet 27:239–251

    Article  CAS  PubMed  Google Scholar 

  • Kriz AL (1999) 7S globulins of cereals. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 477–498

    Chapter  Google Scholar 

  • Kumar A, Kanwal P, Gupta AK, Singh BR, Gaur VS (2013) A full-length Dof1 transcription factor of finger millet and its response to a circadian cycle. Plant Mol Biol Rep

    Google Scholar 

  • Kumar A, Jaiswal JP, Sharma N, Gupta S, Kumar A (2018a) Understanding the molecular basis of differential grain protein accumulation in wheat (Triticum aestivum L.) through expression profiling of transcription factors related to seed nutrients storage. 3 Biotech 8(2):112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Tomer V, Kaur A et al (2018b) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7:31. https://doi.org/10.1186/s40066-018-0183-3

    Article  Google Scholar 

  • Landry J et al (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci 97(11):5807–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton JW (2002) Zein: a history of processing and use. Cereal Chem 79:1–18

    Article  CAS  Google Scholar 

  • Leesawatwong M, Jamjod S, Kuo J, Dell B, Rerkasem B (2005) Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem 82(5):588–593

    Article  CAS  Google Scholar 

  • Lemes AC, Sala L, Ores JDC, Braga ARC, Egea MB, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950

    Article  PubMed Central  CAS  Google Scholar 

  • Leung EH, Ng TB (2007) A relatively stable antifungal peptide from buckwheat seeds with antiproliferative activity toward cancer cells. J Pept Sci 13(11):762–767. https://doi.org/10.1002/psc.891

    Article  CAS  PubMed  Google Scholar 

  • Li H, Aluko RE (2010) Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J Agric Food Chem 58(21):11471–11476. https://doi.org/10.1021/jf102538g

    Article  CAS  PubMed  Google Scholar 

  • Lockhart HB, Hurt HD (1986) Nutrition of oats. In: Webster FH (ed) Oats: chemistry and technology. American Association of Cereal Chemists, Inc., St Paul, MN, pp 297–308

    Google Scholar 

  • Ma MS, Bae IY, Lee HG, Yang CB (2006) Purification and identification of angiotensin I-converting enzyme inhibitory peptide from buckwheat (Fagopyrum esculentum Moench). Food Chem 96(1):36–42. https://doi.org/10.1016/j.foodchem.2005.01.052

    Article  CAS  Google Scholar 

  • Ma Y, **ong YL, Zhai J, Zhu H, Dziubla T (2010) Fractionation and evaluation of radical-scavenging peptides from in vitro digests of buckwheat protein. Food Chem 118(3):582–588. https://doi.org/10.1016/j.foodchem.2009.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majid A, Priyadarshini PCG (2019) Millet derived bioactive peptides: a review on their functional properties and health benefits. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1686342

  • Majumder K, Wu J (2014) Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci 16(1):256–283. https://doi.org/10.3390/ijms16010256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Mandal R (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr Sci 79(5):576–589

    CAS  Google Scholar 

  • Martínez-Andújar C, Pluskota WE, Bassel GW, Asahina M, Pupel P, Nguyen TT, Takeda-Kamiya N, Toubiana D, Bai B, Górecki RJ, Fait A, Yamaguchi S, Nonogaki H (2012) Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds. Plant J 71:575–586. https://doi.org/10.1111/j.1365-313X.2012.05010.x

    Article  CAS  PubMed  Google Scholar 

  • Mena M, Vicente-Carbajosa J, Schmidt RJ, Carbonero P (1998) An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. Plant J 16:53–62

    Article  CAS  PubMed  Google Scholar 

  • Mirza N, Taj G, Arora S, Kumar A (2014) Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.). Gene 550:171–179

    Article  CAS  PubMed  Google Scholar 

  • Mohamed TK, Amadou I, Zhou HM (2012) Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int Food Res J 19(1):207–213

    CAS  Google Scholar 

  • Monteiro PV, Sudharshana L, Ramachandra G (1987) Japanese barnyard millet (Echinochloa frumentacea): protein content, quality and SDS-PAGE of protein fractions. J Sci Food Agric 43:17–25

    Article  Google Scholar 

  • Monterio PV, Virnpaksha TK, Rao DR (1982) Proteins of Italian millet: amino acid composition, solubility fractionation and electrophoresis of protein fractions. J Sci Food Agric 33:1072–1079

    Article  Google Scholar 

  • Moreno-Risueno MÁ, Díaz I, Carrillo L, Fuentes R, Carbonero P (2007) The HvDOF19 transcription factor mediates the abscisic acid-dependent repression of hydrolase genes in germinating barley aleurone. Plant J 51:352–365. https://doi.org/10.1111/j.1365-313X.2007.03146.x

    Article  CAS  PubMed  Google Scholar 

  • Nakase M, Hotta H, Adachi T, Alvarez AM, Aoki N, Nakamura R, Masumura T, Tanaka K, Matsuda T (1996) Cloning of the rice seed alpha-globulin-encoding gene: sequence similarity of the 5′-flanking region to those of the genes encoding wheat high-molecular-weight glutenin and barley D hordein. Gene 170:223–226

    Article  CAS  PubMed  Google Scholar 

  • Nath M, Roy P, Shukla A, Kumar A (2013) Spatial distribution and accumulation of calcium in different tissues, develo** spikes and seeds of finger millet genotypes. J Plant Nutr 36:539–550. https://doi.org/10.1080/01904167.2012.748072

    Article  CAS  Google Scholar 

  • Onate L, Vicente Carbajosa J, Lara P, Diaz I, Carbonero P (1999) Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem 274:9175–9182

    Article  CAS  PubMed  Google Scholar 

  • Osborne TB, Mendel LB (1914) Nutritive properties of the maize kernel. J Biol Chem 18:1–16

    Article  CAS  Google Scholar 

  • Palenchar PM, Kouranov A, Lejay LV et al (2004) Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biol 5:R91. https://doi.org/10.1186/gb-2004-5-11-r91

    Article  PubMed  PubMed Central  Google Scholar 

  • Panyayai T, Ngamphiw C, Tongsima S, Mhuantong W, Limsripraphan W, Choowongkomon K, Sawatdichaikul O (2019) FeptideDB: a web application for new bioactive peptides from food protein. Heliyon 5(7):e02076. https://doi.org/10.1016/j.heliyon.2019.e02076

    Article  PubMed  PubMed Central  Google Scholar 

  • Parameswaran KP, Thayumanavan B (1995) Homologies between prolamins of different minor millets. Plant Food Hum Nutr 48:119–126

    Article  CAS  Google Scholar 

  • Pownall TL, Udenigwe CC, Aluko RE (2010) Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem 58(8):4712–4718. https://doi.org/10.1021/jf904456r

    Article  CAS  PubMed  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65(19):5535–5556. https://doi.org/10.1093/jxb/eru320

    Article  CAS  PubMed  Google Scholar 

  • Qi WZ, Liu HH, Liu P, Dong ST, Zhao BQ, So HB et al (2012) Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur J Agron 38:54–63

    Article  Google Scholar 

  • Ramakrishnan M, Ceasar SA, Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S (2016) Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genetic Resour Crop Evol 63(2):361–376

    Article  Google Scholar 

  • Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, Drider D, Dhulster P (2018) Production of bioactive peptides by Lactobacillus species: from gene to application. Front Microbiol 9:2354

    Article  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque-2 encodes a protein with a “leucine-zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A 87:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura Campos MR, Peralta Gonzalez F, Chel Guerrero L, Betancur Ancona D (2013) Angiotensin I-converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. Int J Food Sci 2013:1. https://doi.org/10.1155/2013/158482

    Article  CAS  Google Scholar 

  • Shen W, Matsui T (2017) Current knowledge of intestinal absorption of bioactive peptides. Food Funct 8(12):4306–4314. https://doi.org/10.1039/C7FO01185G

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 370:947–958

    Article  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Field JM, Kirkman MA, Faults AJ, Miflin BJ (1980) The extraction, solubility, and characterization of two groups of barley storage polypeptides. J Exp Bot 31:393–407

    Article  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 35–78

    Chapter  Google Scholar 

  • Singh UM, Chandra M, Shankhdhar SC, Kumar A (2014) Transcriptome wide identification and validation of calcium sensor gene family in the develo** spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS One. https://doi.org/10.1371/journal.pone.0103963

  • Singh UM, Metwal M, Singh M et al (2015) Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content. Gene 566:37–46. https://doi.org/10.1016/j.gene.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  • Stone MT, Kozlov M (2014) Separating proteins with activated carbon. Langmuir 30(27):8046–8055. https://doi.org/10.1021/la501005s

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao MV, Muralikrishna G (2002) Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (ragi, Eleusine coracana Indaf-15). J Agric Food Chem 50(4):889–892. https://doi.org/10.1021/jf011210d

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U (2015) Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. Plant Cell Rep 34(1):141–156. https://doi.org/10.1007/s00299-014-1695-3

    Article  CAS  PubMed  Google Scholar 

  • Templeman TS, Demaggio AE, Stetler DA (1987) Biochemistry of fern spore germination: globulin storage proteins in Matteuccia struthiopteris L. Plant Physiol 85:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todorovska E, Abumhadi N, Kamenarova K, Zheleva D, Kostova A, Christov N, Alexandrova N, Jacquemin JM, Anzai H, Nakamura C, Atanassov A (2005) Biotechnological approaches for cereal crops. Improv Biotechnol Biotechnol Equip 19(Suppl 3):91–104

    Article  CAS  Google Scholar 

  • Vilcacundo R, Martınez-Villaluenga C, Hernandez-Ledesma B (2017) Release of dipeptidyl peptidase IV, a-amylase and a-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J Funct Foods 35:531–539. https://doi.org/10.1016/j.jff.2017.06.024

    Article  CAS  Google Scholar 

  • Virupaksha TK, Geeta R, Dasasetty N (1975) Seed proteins of finger millet and their amino acid composition. J Sci Food Agric 26(8):1237–1246. https://doi.org/10.1002/jsfa.2740260823

    Article  CAS  Google Scholar 

  • Wang J, Zhao M, Zhao Q, Jiang Y (2007) Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem 101(72):1658–1663

    Article  CAS  Google Scholar 

  • Wang F, Yu G, Zhang Y, Zhang B, Fan J (2015) Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. J Agric Food Chem 63(43):9543–9549. https://doi.org/10.1021/acs.jafc.5b04016

    Article  CAS  PubMed  Google Scholar 

  • Wang YL, Huang Q, Kong D, Xu P (2018) Production and functionality of food-derived bioactive peptides: a review. Mini Rev Med Chem 18(18):1524–1535. https://doi.org/10.2174/1389557518666180424110754

    Article  CAS  PubMed  Google Scholar 

  • Wang B, **e N, Li B (2019) Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: a review. J Food Biochem 43(1):e12571. https://doi.org/10.1111/jfbc.12571

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Gao Y, Qi Y, Chen L, Ma Y, Li Y (2014) Peptide-based cancer therapy: opportunity and challenge. Cancer Lett 351(1):13–22. https://doi.org/10.1016/j.canlet.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Wei L, Qu W, Liang Z, Wang J, Peng X, Zhang Y, Huang K (2011) A novel antifungal peptide from foxtail millet seeds. J Sci Food Agric 91(9):1630–1637. https://doi.org/10.1002/jsfa.4359

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (1996) Dof DNA binding proteins contain a novel zinc finger motif. Trends Plant Sci 1:213–214

    Article  Google Scholar 

  • Yanagisawa S (2002) The DOF family of plant transcription factors. Trends Plant Sci 7(12):555–560

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2004) DOF domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 45:386–391

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Izui K (1993) Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem 268:16028–16036

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S (2017) Proteins recognizing DNA: structural uniqueness and versatility of DNA-binding domains in stem cell transcription factors. Genes 8(8):192. https://doi.org/10.3390/genes8080192

    Article  CAS  PubMed Central  Google Scholar 

  • Youle RJ, Huang AHC (1978) Albumin storage proteins in the protein bodies of castor bean. Plant Physiol 61:13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Gururani, K., Gupta, S., Tiwari, A., Tripathi, M.K., Pandey, D. (2021). Seed Storage Proteins and Amino Acids Synthetic Pathways and Their Regulation in Cereals with Reference to Biologically and Nutritionally Important Proteins and Bioactive Peptides in Millets. In: Kumar, A., Tripathi, M.K., Joshi, D., Kumar, V. (eds) Millets and Millet Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0676-2_8

Download citation

Publish with us

Policies and ethics

Navigation