Synthesis of Yolk-Shell Structured Fe3O4@Void@CdS Nanoparticles: A General and Effective Structure Design for Photo-Fenton Reaction

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 972 Accesses

Abstract

Yolk-shell structured Fe3O4@void@CdS nanoparticles (NPs) were synthesized through a one-pot coating-etching process using Fe3O4@SiO2 as the core, where the coating of an outer CdS shell from a chemical bath deposition (CBD) process was simultaneously accompanied by the gradual etching of an inner SiO2 shell. The as-prepared Fe3O4@void@CdS NPs had good monodispersity with a diameter of ca. 200 nm and a uniform CdS shell of ca. 15 nm. This composite exhibits excellent photo-Fenton activity toward the degradation of methylene blue in a wide pH working range of 4.5–11 under the visible light irradiation. A series of control experiments demonstrate the unique yolk-shell structure contributes to the enhanced activity, where the separation of hole-electron pair from CdS and the reduction of Fe2+ from Fe3+ were cooperatively promoted. A similar efficiency can also be achieved when the shell component changes to TiO2 or CeO2, demonstrating a general strategy for the design of a robust photo-Fenton agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navalon S, de Miguel M, Martin R, Alvaro M, Garcia H (2011) Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light. J Am Chem Soc 133(7):2218–2226

    Article  CAS  PubMed  Google Scholar 

  2. Navalon S, Martin R, Alvaro M, Garcia H (2010) Gold on diamond nanoparticles as a highly efficient Fenton catalyst. Angew Chem 122(45):8581–8585

    Article  Google Scholar 

  3. Pouran SR, Aziz AA, Daud WMAW (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69

    Article  CAS  Google Scholar 

  4. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation–A review. Appl Catal B 176:249–265

    Article  CAS  Google Scholar 

  5. Hammouda SB, Adhoum N, Monser L (2015) Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J Hazard Mater 294:128–136

    Article  CAS  PubMed  Google Scholar 

  6. Xu L, Wang J (2012) Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B 123:117–126

    Google Scholar 

  7. Pastrana-Martínez LM, Pereira N, Lima R, Faria JL, Gomes HT, Silva AM (2015) Degradation of diphenhydramine by photo-Fenton using magnetically recoverable iron oxide nanoparticles as catalyst. Chem Eng J 261:45–52

    Article  CAS  Google Scholar 

  8. Minella M, Marchetti G, De Laurentiis E, Malandrino M, Maurino V, Minero C, Vione D, Hanna K (2014) Photo-Fenton oxidation of phenol with magnetite as iron source. Appl Catal B 154:102–109

    Article  CAS  Google Scholar 

  9. Cleveland V, Bingham J-P, Kan E (2014) Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe 3 O 4. Sep Purif Technol 133:388–395

    Article  CAS  Google Scholar 

  10. Yang S-T, Zhang W, **e J, Liao R, Zhang X, Yu B, Wu R, Liu X, Li H, Guo Z (2015) Fe3O4@SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment. RSC Adv 5(7):5458–5463

    Article  CAS  Google Scholar 

  11. Zhou L, Shao Y, Liu J, Ye Z, Zhang H, Ma J, Jia Y, Gao W, Li Y (2014) Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction. ACS Appl Mater Interfaces 6(10):7275–7285

    Article  CAS  PubMed  Google Scholar 

  12. Shi W, Lu D, Wang L, Teng F, Zhang J (2015) Core–shell structured Fe3O4@SiO2@ CdS nanoparticles with enhanced visible-light photocatalytic activities. RSC Adv 5(128):106038–106043

    Article  CAS  Google Scholar 

  13. Zeng T, Zhang X, Wang S, Ma Y, Niu H, Cai Y (2013) A double-shelled yolk-like structure as an ideal magnetic support of tiny gold nanoparticles for nitrophenol reduction. J Mater Chem A 1(38):11641–11647

    Article  CAS  Google Scholar 

  14. Wang Y, Wang G, **ao Y, Yang Y, Tang R (2014) Yolk-Shell nanostructured Fe3O4@ NiSiO3 for selective affinity and magnetic separation of his-tagged proteins. ACS Appl Mater Interfaces 6(21):19092–19099

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Wang T, Li L, Wang C, Su Z, Li J (2012) Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery. Chem Commun 48(69):8706–8708

    Article  CAS  Google Scholar 

  16. Li L, Wang T, Zhang L, Su Z, Wang C, Wang R (2012) Selected-control synthesis of monodisperse Fe3O4@C core-shell spheres, chains, and rings as high-performance anode materials for lithium-ion batteries. Chemistry 18(36):11417–11422. https://doi.org/10.1002/chem.201200791

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Wang K, Xu Q, Zhou Y, Guo S (2015) Beyond yolk-shell nanoparticles: Fe3O4@Fe3C Core@Shell nanoparticles as yolks; carbon nanospindles as shells for efficient lithium ion storage. ACS Nano 9(3):3369–3376

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Qiao SZ, Budi Hartono S, Lu GQM (2010) Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem 122(29):5101–5105

    Article  Google Scholar 

  19. Liu J, Yang HQ, Kleitz F, Chen ZG, Yang T, Strounina E, Lu GQM, Qiao SZ (2012) Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation. Adv Funct Mater 22(3):591–599

    Article  CAS  Google Scholar 

  20. Liu C, Li J, Qi J, Wang J, Luo R, Shen J, Sun X, Han W, Wang L (2014) Yolk-Shell Fe0@ SiO2 nanoparticles as nanoreactors for fenton-like catalytic reaction. ACS Appl Mater Interfaces 6(15):13167–13173

    Article  CAS  PubMed  Google Scholar 

  21. Xu L, Wang J (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153

    Article  CAS  PubMed  Google Scholar 

  22. Qiu B, Li Q, Shen B, **ng M, Zhang J (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B 183:216–223

    Article  CAS  Google Scholar 

  23. Yang X, Chen W, Huang J, Zhou Y, Zhu Y, Li C (2015) Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system. Sci Rep 5

    Google Scholar 

  24. Abbas M, Rao BP, Reddy V, Kim C (2014) Fe3O4/TiO2 core/shell nanocubes: single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram Int 40(7):11177–11186

    Article  CAS  Google Scholar 

  25. Zeng T, Zhang X, Wang S, Ma Y, Niu H, Cai Y (2014) Assembly of a nanoreactor system with confined magnetite core and shell for enhanced fenton-like catalysis. Chem Eur J 20(21):6474–6481

    Article  CAS  PubMed  Google Scholar 

  26. Liang X, Li J, Joo JB, Gutiérrez A, Tillekaratne A, Lee I, Yin Y, Zaera F (2012) Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew Chem 124(32):8158–8160

    Article  Google Scholar 

  27. Liu J, Cheng J, Che R, Xu J, Liu M, Liu Z (2013) Synthesis and microwave absorption properties of Yolk-Shell microspheres with magnetic iron oxide cores and hierarchical copper silicate shells. ACS Appl Mater Interfaces 5(7):2503–2509

    Article  CAS  PubMed  Google Scholar 

  28. Do QC, Kim DG, Ko SO (2018) Catalytic activity enhancement of a Fe3O4@SiO2 yolk-shell structure for oxidative degradation of acetaminophen by decoration with copper. J Cleaner Prod 172 (pt.2):1243–1253

    Google Scholar 

  29. Zhuang Y, Yuan S, Liu J, Zhang Y, Pei Y (2019) Synergistic effect and mechanism of mass transfer and catalytic oxidation of octane degradation in yolk-shell Fe3O4@C/fenton system. Chem Eng J 379:122262

    Article  CAS  Google Scholar 

  30. Niu H, Zheng Y, Wang S, Zhao L, Cai Y (2017) Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton-like catalysts yolk/shell Pd@Fe3O4 @metal organic frameworks. J Hazard Mater 346:174

    Article  PubMed  CAS  Google Scholar 

  31. Lee S-U, Jung H, Wi DH, Hong JW, Sung J, Choi S-I, Han SW (2018) Metal–semiconductor yolk–shell heteronanostructures for plasmon-enhanced photocatalytic hydrogen evolution. J Mater Chem A 6(9):4068–4078. https://doi.org/10.1039/c7ta09953c

    Article  CAS  Google Scholar 

  32. Zhao J, Li W, Liu H, Shi H, **ao C (2019) Yolk-shell CdS@void@TiO2 composite particles with photocorrosion resistance for enhanced dye removal and hydrogen evolution. Adv Powder Technol 30(9):1965–1975. https://doi.org/10.1016/j.apt.2019.06.015

    Article  CAS  Google Scholar 

  33. Zhang P, Guan BY, Yu L, Lou XW (2018) Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion. Chem 4(1):162–173. https://doi.org/10.1016/j.chempr.2017.10.018

    Article  CAS  Google Scholar 

  34. Wang H, Zhu C, Xu L, Ren Z, Zhong C (2020) Layer-by-layer assembled synthesis of hollow yolk-shell CdS–graphene nanocomposites and their high photocatalytic activity and photostability. J Nanoparticle Res 22(4). https://doi.org/10.1007/s11051-020-04826-6

  35. Bibi R, Huang H, Kalulu M, Shen Q, Wei L, Oderinde O, Li N, Zhou J (2018) Synthesis of amino-functionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light. ACS Sustain Chem Eng

    Google Scholar 

  36. Shi W, Du D, Shen B, Cui C, Lu L, Wang L, Zhang J (2016) Synthesis of yolk-shell structured Fe3O4@void@CdS nanoparticles: a general and effective structure design for photo-fenton reaction. ACS Appl Mater Interfaces 8(32):20831–20838. https://doi.org/10.1021/acsami.6b07644

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, **ong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem 121(32):5989–5993

    Article  Google Scholar 

  38. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  39. Li W, Yang J, Wu Z, Wang J, Li B, Feng S, Deng Y, Zhang F, Zhao D (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. J Am Chem Soc 134(29):11864–11867. https://doi.org/10.1021/ja3037146

    Article  CAS  PubMed  Google Scholar 

  40. Cheng G, Zhang J-L, Liu Y-L, Sun D-H, Ni J-Z (2011) Synthesis of novel Fe3O4@ SiO2@ CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun 47(20):5732–5734

    Article  CAS  Google Scholar 

  41. Prabhu RR, Khadar MA (2008) Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull Mater Sci 31(3):511–515

    Article  CAS  Google Scholar 

  42. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174(2):424–430

    Article  CAS  Google Scholar 

  43. Zhou J, Wu X, Teeter G, To B, Yan Y, Dhere R, Gessert T (2004) CBD-Cd1-xZnxS thin films and their application in CdTe solar cells. Physica Status Solidi 241(3):775–778

    Google Scholar 

  44. Figueroa RA, Leonard A, MacKay AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38(2):476–483

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y, Ohko Y, Zhang R, Yang Y, Zhang Z (2010) Degradation of malachite green on Pd/WO 3 photocatalysts under simulated solar light. J Hazard Mater 184(1):386–391

    Article  CAS  PubMed  Google Scholar 

  46. Xu W, Zhu S, Liang Y, Li Z, Cui Z, Yang X, Inoue A (2015) Nanoporous CuS with excellent photocatalytic property. Sci Rep 5

    Google Scholar 

  47. Liu W, Wang Y, Ai Z, Zhang L (2015) Hydrothermal synthesis of FeS2 as a high-efficiency fenton reagent to degrade alachlor via superoxide-mediated Fe(II)/Fe(III) cycle. ACS Appl Mater Interfaces 7(51):28534–28544

    Article  CAS  PubMed  Google Scholar 

  48. Voinov MA, Pagán JOS, Morrison E, Smirnova TI, Smirnov AI (2010) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41

    Article  PubMed  CAS  Google Scholar 

  49. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-in aqueous solution. J Phys Chem Ref Data 17(2):513–886

    Article  CAS  Google Scholar 

  50. Stefan MI, Mack J, Bolton JR (2000) Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O2 process. Environ Sci Technol 34(4):650–658

    Article  CAS  Google Scholar 

  51. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219

    Article  CAS  PubMed  Google Scholar 

  52. Zhao Y, Pan F, Li H, Niu T, Xu G, Chen W (2013) Facile synthesis of uniform α-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. J Mater Chem A 1(24):7242–7246

    Article  CAS  Google Scholar 

  53. Dong W, Zhu Y, Huang H, Jiang L, Zhu H, Li C, Chen B, Shi Z, Wang G (2013) A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. J Mater Chem A 1(34):10030–10036

    Article  CAS  Google Scholar 

  54. Wang J, Li X, Li X, Zhu J, Li H (2013) Mesoporous yolk–shell SnS 2–TiO2 visible photocatalysts with enhanced activity and durability in Cr (vi) reduction. Nanoscale 5(5):1876–1881

    Article  CAS  PubMed  Google Scholar 

  55. Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84(1):57–71

    Article  CAS  PubMed  Google Scholar 

  56. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **long Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Zhang, J. (2021). Synthesis of Yolk-Shell Structured Fe3O4@Void@CdS Nanoparticles: A General and Effective Structure Design for Photo-Fenton Reaction. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_28

Download citation

Publish with us

Policies and ethics

Navigation