Effect of Core–Shell Structure of TiO2 on Its Photocatalytic Performance

  • Chapter
  • First Online:
Core-Shell and Yolk-Shell Nanocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1058 Accesses

Abstract

Photocatalytic technology has become a hot spot to solve environmental and energy problems. Among many photocatalysts, TiO2 has attracted much attention for its low cost, high stability and excellent photocatalytic activity. With the rapid development of nanotechnology, scientists are deepening their research on the core–shell TiO2 which has a special morphology and structure. It can be a multi-layer composite of multiple components or multiple reflections of light on the inner surface which greatly affects the photocatalytic activity of TiO2. Therefore, a variety of core–shell TiO2 nanomaterials have been designed and prepared to solve the problem of insufficient performance of TiO2 in the photocatalytic process. This chapter reviews the research progress of various core–shell TiO2 nanomaterials in the field of photocatalysis. We discussed the design, preparation and application of the materials in pollutant degradation, hydrogen production and carbon dioxide emission reduction. Finally, the development prospects of core–shell TiO2 nanomaterials in the field of photocatalysis are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Girish Kumar S, Gomathi Devi L (2011) Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem a 115:13211–13241

    Article  PubMed  CAS  Google Scholar 

  2. Ravelli D, Dondi D, Fagnonia M, Albini A (2008) Photocatalysis. A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  4. Qing G, Zhibo M, Chuanyao Z, Zefeng R, Xueming Y (2019) Single molecule photocatalysis on TiO2 surfaces. Chem Rev 119:11020–11041

    Article  CAS  Google Scholar 

  5. **aobo C, Samuel SM (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  6. Xueqin L, Iocozzia J, Yang W, Xun C, Yihuang C, Shiqiang Z, Zhen L, Zhiqun L (2017) Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10:402

    Article  CAS  Google Scholar 

  7. Huanli W, Lisha Z, Zhigang C, Junqing H, Shijie L, Zhaohui W, Jianshe L, **nchen W (2014) Semiconductor heterojunction photocatalysts: design, construction, and Photocatalytic performances. Chem Soc Rev 43:5234

    Article  Google Scholar 

  8. Michael D, Yiding L, Yadong Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889

    Article  CAS  Google Scholar 

  9. Chun** X, Prasaanth Ravi A, Cyril A, Rafael L, Samuel M (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868–3902

    Article  Google Scholar 

  10. Qiao Z, Ilkeun L, Ji Bong J, Franclsco Z, Yadong Y (2013) Core shell nanostructured catalysts. Accounts Chem Res 46:1816–1824

    Article  CAS  Google Scholar 

  11. Wei L, Ahmed E, Dhaifallah A, Dongyuan Z (2018) core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chem Soc Rev 47:8203

    Article  Google Scholar 

  12. **n L, Jiaguo Y, Mietek J (2016) Hierarchical photocatalysts. Chem Soc Rev 45:2603

    Article  Google Scholar 

  13. Tsutomu H, Prashant VK (2005) Charge separation and catalytic activity of Ag@TiO2 core–shell composite clusters under UV-irradiation. J Am Chem Soc 127:3928–3934

    Article  CAS  Google Scholar 

  14. Hideki S, Takashi K, Hirobumi S, Takahiro O, Masahiko A (2005) Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J Am Chem Soc 128:4944–4945

    Google Scholar 

  15. Wei Liang L, Fan Cheng L, Yu Chen Y, Chen Hsien H, Shangjr G, Michael HH, Jer Shing H (2013) The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale 5:7953

    Article  CAS  Google Scholar 

  16. Yingying W, Wenjuan Y, **anjie C, Jun W, Yongfa Z (2018) Photocatalytic activity enhancement of core–shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer. Appl Catal B Environ 220:337–347

    Article  CAS  Google Scholar 

  17. Jiang D, Jian Q, Dan W, Zhiyong T (2012) Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ Sci 5:6914

    Article  CAS  Google Scholar 

  18. Hexing L, Zhenfeng B, Jian Z, Dieqing Z, Guisheng L, Yuning H, Hui L, Yunfeng L (2007) Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  19. **gxia L, Jianhua X, Wei-Lin D, Hexing L, Kangnian F (2009) Direct hydro-alcohol thermal synthesis of special core–shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity. Appl Catal B Environ 58:162–170

    Google Scholar 

  20. Zhenfeng B, Jian Z, Fenglei C, Yunfeng L, Hexing L (2009) In situ encapsulation of Au nanoparticles in mesoporous core–shell TiO2 microspheres with enhanced activity and durability. Chem Commun 3789–3791

    Google Scholar 

  21. Zhenfeng B, Jian Z, **guo W, Shengxiong X, Colin N, Hexing L (2012) Multitemplates for the hierarchical synthesis of diverse inorganic materials. J Am Chem Soc 134:2325–2331

    Article  CAS  Google Scholar 

  22. Lori EG, Matt L, Benjamin DY, Peidong Y (2007) ZnO-TiO2 core–shell nanorod/P3HT solar cells. J Phys Chem C 111:18451–18456

    Article  CAS  Google Scholar 

  23. Chia Yang H, Der Hsien L, Sheng Yi L, Cheng Ying C, Chen Fang K, Yu Lun C, Wen Kuang H, Jr Hau H (2012) Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core–shell nanowire geometry. ACS Nano 6:6687–6692

    Article  CAS  Google Scholar 

  24. Guerra Nuñez C, Yucheng Z, Meng L, Vipin C, Rolf E, Johann M, Hyung Gyu P, Ivo U (2015) Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition. Nanoscale 7:10622

    Article  PubMed  CAS  Google Scholar 

  25. **aoyan W, Ling F, Decai G, Jian Z, Qingfeng Z, Bingan L (2015) Core–shell Ge@Graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater 26:1104–1111

    Google Scholar 

  26. Stacey DS, George CS, Joseph TH (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409

    Article  CAS  Google Scholar 

  27. Yajun Z, Jian-Wen S, Dandan M, Zhaoyang F, Lu L, Chunming N (2017) In-situ synthesis of C-doped TiO2@g-C3N4 core–shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem Eng J 322:435–444

    Article  CAS  Google Scholar 

  28. Biao Z, Gang S, Bingbing F, Wanyu Z, Rui Z (2015) Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys Chem Chem Phys 17:2531

    Article  CAS  Google Scholar 

  29. Zhenfeng B, Jie R, Jian Z, Shaohua W, Yunfeng L, Hexing L (2009) Self-assembly of BixTi1-xO2 visible photocatalyst with core–shell structure and enhanced activity. Appl Catal B Environ 89:577–582

    Article  CAS  Google Scholar 

  30. Chao T, Longfei L, Yali L, Zhenfeng B (2017) Aerosol spray assisted assembly of TiO2 mesocrystals into hierarchicalhollow microspheres with enhanced photocatalytic performance. Appl Catal B Environ 201:41–47

    Article  CAS  Google Scholar 

  31. Sunita K, Sandeep K, Ashok KG (2016) Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis. ACS Sustain Chem Eng 4:1487–1499

    Article  CAS  Google Scholar 

  32. Hang S, Jiating H, Jiangyan W, Shuang Yuan Z, Cuicui L, Thirumany S, Subodh M, Ming Yong H, Dan W, Hongyu C (2013) Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J Am Chem Soc 135:9099–9110

    Article  CAS  Google Scholar 

  33. Haiyang H, Yan L, Yun Hang H (2020) core–shell structured TiO2 as highly efficient visible light photocatalyst for dye degradation. Catal Today 341:90–95

    Article  CAS  Google Scholar 

  34. Manas P, Hao W, Yunke J, **aomin L, Hongwei Z, Changyao W, Shuai W, Abdullah MA, Yonghui D, Gengfeng Z, Dongyuan Z (2016) Core–shell silicon@mesoporous TiO2 heterostructure: towards solar-powered photoelectrochemical conversion. ChemNanoMat 2:647–651

    Article  CAS  Google Scholar 

  35. Wei L, Jian** Y, Zhangxiong W, **xiu W, Bin L, Shanshan F, Yonghui D, Fan Z, Dongyuan Z (2012) A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core−shell structures. J Am Chem Soc 134:11864–11867

    Article  CAS  Google Scholar 

  36. Malato S, Fernãndez-Ibãñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  37. Yawei F, Hao L, Lili L, Sa Y, Donglai P, Hao G, Hexing L, Zhenfeng B (2018) Enhanced photocatalytic degradation performance by fluid-oinduced piezoelectric field. Environ Sci Technol 52:7842–7848

    Article  CAS  Google Scholar 

  38. Akihiko K, Yugo M (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  39. Yongqiang Y, Gang L, John TSI, Hui-Ming C (2016) Enhanced photocatalytic H2 production in core–shell engineered rutile TiO2. Adv Mater 28:5850–5856

    Article  CAS  Google Scholar 

  40. Ning L, Christopher S, Detlef F, Umamaheswari V, V. R. Reddy M, Martin Hn, Benjamin W, Erdmann S Andres O, Eva M. Z, Karsten M, Tomohiko N, Xuemei Z, Patrik S, (2014) Hydrogenated anatase: strong photocatalytic dihydrogen evolution without the use of a co-catalyst. Angew Chem Int Ed 53:14201–14205

    Article  CAS  Google Scholar 

  41. Jiaqi P, Zongjun D, Beibei W, Ziyuan J, Chuang Z, **g**g W, Changsheng S, Yingying Z, Chaorong L (2019) The enhancement of photocatalytic hydrogen production via Ti3+ self-do** black TiO2/g-C3N4 hollow core–shell nano-heterojunction. Appl Catal B Environ 242:92–99

    Article  CAS  Google Scholar 

  42. Guoheng Y, **eyi H, Tianyuan C, Wei Z, Qingyuan B, **g X, Yifan H, Fuqiang H (2018) Hydrogenated blue titania for efficient solar to chemical conversions: preparation, pharacterization, and reaction mechanism of CO2 reduction. ACS Catal 8:1009–1017

    Article  CAS  Google Scholar 

  43. Rui L, Jiahua H, Mingsen D, Helin W, **jun W, Yingli H, Hai-Long J, Jun J, Qun Z, **e Yi, Yujie X (2014) Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater 26:4783–4788

    Article  CAS  Google Scholar 

  44. Meei Mei G, Siang Piao C, Bo Qing X, Abdul Rahman M (2014) Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol Energy Mater Sol Cells 122:183–189

    Article  CAS  Google Scholar 

  45. Hua T, Shuxin O, Yingpu B, Naoto U, Mitsutake O, **hua Y (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Y., Li, H., Bian, Z. (2021). Effect of Core–Shell Structure of TiO2 on Its Photocatalytic Performance. In: Yamashita, H., Li, H. (eds) Core-Shell and Yolk-Shell Nanocatalysts. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0463-8_27

Download citation

Publish with us

Policies and ethics

Navigation