Microplastic Pollution in Marine Environment: Occurrence, Fate, and Effects (With a Specific Focus on Biogeochemical Carbon and Nitrogen Cycles)

  • Chapter
  • First Online:
Microplastic Pollution

Abstract

The pollution of microplastics is becoming increasingly serious, and rising evidence shows that the marine environment, especially sediments are major sinks of these plastics. So far, microplastic particles have been reported as widespread in large quantities in various water body and sedimentary environments such as beach, shallow coastal area, estuary, fjord, continental shelf environments, and deep-sea environments. Moreover, recent studies showed that the existence of microplastics would influence the structure and function of marine environmental microbial communities, thereby affecting the nitrogen/carbon cycling processes in marine environment especially sediments. Considering increasing microplastic pollution in marine environment especially sediment, the impact of plastics on marine ecosystems and biogeochemical cycling deserves in-depth investigation. Therefore, in the present study, information on occurrences and fate of microplastic particles in different marine environments, and their effects, mainly on marine ecosystems and biogeochemical carbon and nitrogen cycles, is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xue W, Huang D, Zeng G, Wan J, Zhang C, Rui X, Cheng M (2017) Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J Hazard Mater 341:381–389

    Article  CAS  Google Scholar 

  2. PlasticEurope (2019) An analysis of European plastics production, demand and waste data

    Google Scholar 

  3. Lebreton L, Van der Zwet J, Damsteeg J-W, Slat B, Andrady AL, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8:15611

    Article  CAS  Google Scholar 

  4. Thompson RC (2004) Lost at sea: where is all the plastic?. Sci 304(5672):838

    Google Scholar 

  5. Ryan PG, Moore CJ, van Franeker JA, Moloney CL (2009) Monitoring the abundance of plastic debris in the marine environment. Philos Trans Royal Soc London. Ser B, Biol Sci 364(1526):1999–2012

    Article  CAS  Google Scholar 

  6. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    Article  CAS  Google Scholar 

  7. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075

    Article  CAS  Google Scholar 

  8. Li J, Huang W, Jiang, R, Han X, Zhang D, Zhang C (2020) Are bacterial communities associated with microplastics influenced by marine habitats? Sci Total Environ 733:139400

    Article  CAS  Google Scholar 

  9. Zhang D, Liu X, Huang W, Li J, Wang C, Zhang D, Zhang C (2020) Microplastic pollution in deep-sea sediments and organisms of the Western Pacific Ocean. Environ Pollut 259:113948

    Article  CAS  Google Scholar 

  10. Zhang D, Cui Y, Zhou H, ** C, Yu X, Xu Y, Li Y, Zhang C (2019) Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci Total Environ 703:134768

    Article  Google Scholar 

  11. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597

    Google Scholar 

  12. Zhang K, Shi H, Peng J, Wang Y, **ong W (2018) Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management. Sci Total Environ 630:1641–1653

    Google Scholar 

  13. Alomar C, Estarellas F, Deudero S (2016) Microplastics in the Mediterranean sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar Environ Res 115:1–10

    Google Scholar 

  14. Li J, Huang W, Yongjiu X, ** A, Zhang D, Zhang C (2020) Microplastics in sediment cores as indicators of temporal trends in microplastic pollution in Andong salt marsh, Hangzhou Bay, China. Reg Stud Mar Sci 35:101149

    Google Scholar 

  15. WoodallL, Sanchez-Vidal A, Canals M, Gordon L, Paterson J, Coppock R, Sleight V, Calafat A, Rogers AD, Narayanaswamy BE, Thompson RC (2014) The deep sea is a major sink for microplastic debris. Royal Soc Open Sci 1(4):140317

    Article  CAS  Google Scholar 

  16. Evangeliou N, Grythe H, Klimont Z, Heyes C, Stohl A (2020) Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 11(1):3381  

    Google Scholar 

  17. Radisic V, Nimje PS, Bienfait AM, Nachiket P (2020) Marine plastics from norwegian west coast carry potentially virulent fish pathogens and opportunistic human pathogens harboring new variants of antibiotic resistance genes. Microorganisms 8(8):1200  

    Google Scholar 

  18. Bakir A, Rowland SJ, Thompson RC (2014) Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuarine Coastal Shelf Sci 140:14–21

    Article  CAS  Google Scholar 

  19. Kusum KK, Vineetha G, Raveendran TV, Muraleedharan KR, Nair M, Achuthankutty CT (2011) Impact of oxygen-depleted water on the vertical distribution of chaetognaths in the northeastern Arabian Sea. Deep Sea Res Part I 58(12):1163–1174

    Google Scholar 

  20. Bowley J, Baker-Austin C, Hartnell R, Lewis C, Porter A (2020) Oceanic hitchhikers—assessing pathogen risks from marine microplastic. Trends Microbiol 29(2):107–116

    Google Scholar 

  21. Carbery M, O’Connor W, Thavamani P (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115(JUN):400–409

    Google Scholar 

  22. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54

    Google Scholar 

  23. Liorca M, Abalos M, Vega-Herrera A, Adrados MA, Abad E, Farre M (2020) Adsorption and desorption behaviour of polychlorinated biphenyls onto microplastics’ surfaces in water/sediment systems. Toxics 8(3):59

    Article  CAS  Google Scholar 

  24. Marris E (2014) Fate of ocean plastic remains a mystery. Nature News. https://doi.org/10.1038/nature.2014.16508

  25. Eriksen M, Laurent LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons Afloat at Sea. Plos One 9(12):e111913

    Google Scholar 

  26. Francesca MCF, Ryan PG (2016) Biofouling on buoyant marine plastics: an experimental study into the effect of size on surface longevity. Environ Pollut 210:354–360

    Article  Google Scholar 

  27. Song Y, Hong S, Jang M, Han G, Shim W (2015) Occurrence and distribution of microplastics in the sea surface microlayer in **hae bay, south korea. Arch Environ Con Tox 69(3):279–287

    Google Scholar 

  28. Zhao S, Zhu L, Wang T, Li D (2014) Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Mar Pollut Bull 86:562–568

    Google Scholar 

  29. Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T (2016) Microplastics in the Southern Ocean. Mar Pollut Bull 114:623–626

    Google Scholar 

  30. Nel HA, Hean JW, Noundou XS, Froneman PW (2017) Do microplastic loads reflect the population demographics along the southern african coastline?. Mar Pollut Bull 115(1–2):115–119

    Google Scholar 

  31. Nel HA, Froneman PW (2015) A Quantitative Analysis of Microplastic Pollution Along the South-eastern Coastline of South Africa. Mar Pollut Bull 101:274–279

    Article  CAS  Google Scholar 

  32. Sutton R, Mason SA, Stanek SK, Willis-Norton E, Wren IF, Box C (2016) Microplastic contamination in the san francisco bay, california, usa. Mar Pollut Bull109(1):230–235

    Google Scholar 

  33. Mauro RD, Kupchik MJ, Benfield MC (2017) Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico. Environ Pollut 230:798–809

    Article  CAS  Google Scholar 

  34. Suaria G, Avio CG, Lattin G, Regoli F, Aliani S (2017) Floating microplastic in the South Adriatic sea. Fate and impact of microplastics in marine ecosystems. From the coastline to the open sea, 51–52

    Google Scholar 

  35. De Carvalho DG, Baptista Neto JA (2016) Microplastic pollution of the beaches of Guanabara Bay, Southeast Brazil. Ocean Coastal Manag 128:10–17

    Google Scholar 

  36. Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC (2014) Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Fut 2(6):315–320

    Google Scholar 

  37. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic Ingestion by Zooplankton. Environ Sci Technol 47(12):6646–6655

    Google Scholar 

  38. Maes T, Van der Meulen MD, Devriese LI, Leslie HA, Frere L, Robbens J, Dick Vethaak A (2017) Microplastics baseline surveys at the water surface and in sediments of the North-East Atlantic. Front Mar Sci 4:135

    Google Scholar 

  39. Zhang C, Zhou H, Cui Y, Wang C, Li Y, Zhang D (2018) Microplastics in offshore sediment in the Yellow Sea and East China Sea, China. Environ Pollut 244:827–833

    Article  Google Scholar 

  40. Kunz A, Walther BA, Lowemark L, Lee Y-C (2018) Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar Pollut Bull 111(1–2):126–135

    Article  Google Scholar 

  41. Kazmiruk TN, Kazmiruk VD, Bendell L (2018) Abundance and distribution of microplastics within surface sediments of a key shellfish growing region of Canada. Plos One 13(5):e0196005

    Google Scholar 

  42. Abidli S, El Menif NT, Toumi H, Lahbib Y (2017) The first evaluation of microplastics in sediments from the complex lagoon-channel of Bizerte (Northern Tunisia). Water Air Soil Pollut 228(7):262

    Article  Google Scholar 

  43. Ballent A, Corcoran PL, Madden O, Helm PA, Longstaffe FJ (2016) Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar Pollut Bull 110(1):383–395

    Article  Google Scholar 

  44. Satoshi N, Asako O, Kazuo Y, Keiko M, Tadashi N, Takanori S (2019) Microplastics contamination in tidelands of the Osaka bay area in western Japan. Water Environ J 34(3):474–488

    Google Scholar 

  45. Manalu AA, Hariyadi S, Wardiatno Y (2017) Microplastics abundance in coastal sediments of Jakarta Bay, Indonesia. AACL Bioflux 10(5):1164–1173

    Google Scholar 

  46. Van Cauwenberghe L, Claessens M, Vandegehuchte, MB (2015) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollution 199:10–17

    Article  CAS  Google Scholar 

  47. Kolandhasamy P, Lei S, Li J, Qu X, Jabeen K, Shi H (2018) Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion. Sci Total Environ 610–611:635–640

    Google Scholar 

  48. Santana MFM, Ascer LG, Custodio MR, Moreira FT, Turra AJMPB (2016) Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar Pollut Bull 106(1-2):183–189

    Article  Google Scholar 

  49. Renzi M, Guerranti C, Blaslovic AJMPB (2018) Microplastic contents from maricultured and natural mussels. Mar Pollut Bull 131:248–251

    Google Scholar 

  50. Khan MB, Prezant, Prezent RS (2018) Microplastic abundances in a mussel bed and ingestion by the ribbed marsh mussel Geukensia demissa. Mar Pollut Bull 130:67–75

    Google Scholar 

  51. Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TBJEP (2018) Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut 237:675–684

    Article  CAS  Google Scholar 

  52. Frias JPGL, Otero V, Sobral P (2014) Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res 95:89–95

    Google Scholar 

  53. Li Q, Zhu M, Liang J, Zheng S, Zhao Y (2017) Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Mar Pollut Bull 115(1–2):217–224

    Google Scholar 

  54. Neves D, Sobral P, Ferreira JL, Pereira T (2015) Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull 101:119–126

    Google Scholar 

  55. Alomar C, Estarellas F, Deudero S (2016) Microplastics in the Mediterranean sea: deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar Environ Res 115:1–10

    Google Scholar 

  56. Abbasi S, Soltani N, Keshavarzi B, Moore F, Turner A, Hassanaghaei M (2018) Microplasticsin different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 205:80–87

    Google Scholar 

  57. Jabeen K, Su L, Li J, Yang D, Tong C, Mu J (2016) Microplastics and mesoplastics in fish from coastal and fresh waters of china. Environ Pollut 221:141–149

    Article  CAS  Google Scholar 

  58. Bessa F, Barría P, Neto JM, Frias JPGL, Otero V, Sobral P (2018) Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull 128:575–584

    Article  CAS  Google Scholar 

  59. Fadiyah M, Baalkhuyur, El-Jawaher A (2018) Microplastic in the gastrointestinal tract of fishes along the saudi arabian red sea coast. Mar Pollut Bull 131:407–415

    Google Scholar 

  60. Vendel AL, Bessa F, Alves VEN, Amorim ALA, Patrício J, Palma ART (2017) Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures. Mar Pollut Bull 117(1–2):448–455

    Article  Google Scholar 

  61. Steer M, Lindeque PK, Cole M, Thompson R (2018) Microplastic ingestion in fish larvae in the western english channel. Environ Pollut 1–10

    Article  CAS  Google Scholar 

  62. Zhao Y, Sun X, Li Q, Shi Y, Zheng S, Liang J (2019) Data on microplastics in the digestive tracts of 19 fish species from the yellow sea, china. Data in brief 25:103989

    Google Scholar 

  63. Abadi ZTR, Abtahi B, Grossart HP, Khodabandeh S (2021) Microplastic content of kutum fish, rutilus frisii kutum in the southern caspian sea. Sci Total Environ 752(15):141542

    Google Scholar 

  64. Borrelle SB, Avery-Gomm S, Provencher J (2016) Room for Improvement: spatial, taxonomic and methodological gaps in seabird plastic ingestion research. Society for conservation biology oceania. https://doi.org/10.13140/RG.2.2.22020.12160

  65. Amélineau, Bonnet, Heitz, Mortreux AAM, Harding (2016) Microplastic pollution in the greenland sea: background levels and selective contamination of planktivorous diving seabirds. Environ Pollut 219:1131–1139

    Article  CAS  Google Scholar 

  66. Terepocki AK, Brush AT, Kleine LU, Shugart GW, Hodum P (2017) Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar Pollut Bull 116(1–2):143–150

    Google Scholar 

  67. Caron AGM, Thomas CR, Berry KLE, Motti CA, Ariel E, Brodie JE (2018) Ingestion of microplastic debris by green sea turtles (chelonia mydas) in the great barrier reef: validation of a sequential extraction protocol. Mar Pollut Bull 127:743–751

    Google Scholar 

  68. Nava V, Leoni B (2021) A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res 188:116476

    Google Scholar 

  69. Michels J, Stippkugel A, Wirtz K, Engel A (2015) Aggregation of microplastics with marine biogenic particles. Aslo Aquatic Sciences Meeting 2015

    Google Scholar 

  70. Kalcikova G, Skalar T, Marolt G, Kokalj AJ (2020) An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res175:115644.1–115644.9

    Google Scholar 

  71. Underwood GJC, Boulcott M, Raines CA, Waldron K (2010) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40(2):293–304

    Google Scholar 

  72. Wirnkor A, EbereEC, Ngozi E, Oharley N (2019) Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci 1(11):1400

    Article  CAS  Google Scholar 

  73. Yeung WYK (2017) Ecological impacts of larvicidal oil on the marine ecosystem: implications on its management. The University of Hong Kong

    Article  CAS  Google Scholar 

  74. Long M, Paul-Pnot I, Hégaret H, Moriceau B, Lambert C, Huvet A, Soudant P (2017) Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ Pollution 228:454–463

    Google Scholar 

  75. Priyanka B, Sijie L, James P, Turner P, Chun K (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem 114(39):16556–16561

    Article  CAS  Google Scholar 

  76. Chae Y, Kim D, An Y-J (2019) Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquatic Toxicol (Amsterdam, Netherlands) 216:105296

    Google Scholar 

  77. Wang C, Dong X, Shao Q, Pan X, Qin P (2019) Research progress on pollution behavior and toxicological effects of nanoplastics. Guangdong Chem Ind 46(9):138–139

    Google Scholar 

  78. Zhang C, Chen X, Wang J, Tan L (2016) Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environ Pollut 220:1282–1288

    Google Scholar 

  79. Mao Y, Ai H, Zhang Z, Zeng P, Kang L, Li W, Weikang G, He Q, Li H (2018) Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere 208:59–68

    Google Scholar 

  80. Ting Z, Liju T, Wenqiu H, Jiang W (2019) The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency. Environ Pollut 247:883–889

    Google Scholar 

  81. Besseling E, Wang B, Luerling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48(20):12336–12343

    Google Scholar 

  82. Kosore CM, Ojwang L, Maghanga JK, Kamau JN, Kimeli A, Omukoto J, Ngisiag’ N, Mwaluma J, Ong’ada H, Magori C (2018) Occurrence and ingestion of microplastics by zooplankton in Kenya’s marine environment: first documented evidence. African J Mar Sci 40(3):225–234

    Google Scholar 

  83. Shen M, Ye S, Zeng G, Zhang Y, **ng L, Tang W, Wen X, Liu S (2019) Can microplastics pose a threat to ocean carbon sequestration? Mar Pollut Bull 150:110712

    Google Scholar 

  84. Wieczorek AM, Croot PL, Lombard F, Sheahan JN, Doyle TK (2019) Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environ Sci Technol 53(9):5387–5395

    Google Scholar 

  85. Volkenborn N, Hedtkamp SIC, Beusekom JEEV, Reise KJEC (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuarine Coastal Shelf Sci 74(1–2):331–343

    Google Scholar 

  86. Norling K, Rosenberg R, Hulth S, Gremare A, Bonsdorff E (2008) Importance of functional biodiversity and species-specific traits of benthic fauna for ecosystem functions in marine sediment. Mar Ecol Progr 332:11–23

    Google Scholar 

  87. Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31(11):2490–2497

    Google Scholar 

  88. Rist S, Baun A, Almenda R, Hartmann NB (2019) Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Mar Pollut Bull 207:423–430

    Google Scholar 

  89. Evan Ward J, Zhao S, Holohan BA, Mladinich Mladinich K, Griffin T, Wozniak J, Shumway SE (2019) Selective ingestion and egestion of plastic particles by the blue mussel (Mytilus edulis) and eastern oyster (Crassostrea virginica): implications for using bivalves as bioindicators of microplastic pollution. Environ Sci Technol 53(15):8776–6784

    Google Scholar 

  90. Silva Carlos JM, Patricio Silva AL, Campos D, Soares Amadeu MVM, Pestana Joao LT, Gravato C (2020) Lumbriculus variegatus (oligochaeta) exposed to polyethylene microplastics: biochemical, physiological and reproductive responses. Ecotoxicol Environ Saf 207:111375

    Google Scholar 

  91. Li C, Gan Y, Dong J, Fang J, Chen H, Quan Q, Liu J (2020) Impact of microplastics on microbial community in sediments of the Huang**xia Reservoir—water source of a water diversion project in western China, China. Chemosphere 253:126740

    Google Scholar 

  92. Mccormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ (2014) Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol 48(20):11863–11871

    Google Scholar 

  93. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:232

    Google Scholar 

  94. Miao L, Wang P, Jun Hou Yu, Yao ZL, Liu S, Li T (2018) Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ 650:2395–2402

    Google Scholar 

  95. Kooi M, van Nes EH, Scheffer M, Koelmans AA (2017) Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ Sci Technol 51(14):7963–7971

    Google Scholar 

  96. Seeley ME, Song B, Passie R, Hale RC (2020) Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat Commun 11(1):2372

    Google Scholar 

  97. Shen M, Zhu Y, Zhang Y, Zeng G, Wen X, Yi H, Ye S, Ren X, Song B (2019) Micro(nano)plastics: unignorable vectors for organisms. Mar Pollut Bull 139:328–331

    Google Scholar 

  98. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137

    Google Scholar 

  99. Ward BB (2008) Nitrification in Marine systems. Nitrogen in the Marine environment (2nd Edition), pp 199–261

    Google Scholar 

  100. Choi SY, Rodríguez H, Nimal Gunaratne HQ, Puga AV, Gilpin DF, Mcgrath S, Vyle JS, Tunney MM, Rogers RD, Mcnally T (2014) Dual functional ionic liquids as antimicrobials and plasticisers for medical grade PVCs. RSC Adv 4(17):8567–8581

    Google Scholar 

  101. Cluzard M, Kazmiruk TN, Kazmiruk VD, Bendell L (2015) Intertidal concentrations of microplastics and their influence on ammonium cycling as related to the shellfish industry. Arch Environ Contamination Toxicol 69(3):310–319

    Google Scholar 

  102. Pratt DR, Pilditch CA, Lohrer AM, Thrush SF, Kraan C (2015) Spatial distributions of grazing activity and microphytobenthos reveal scale-dependent relationships across a sedimentary gradient. Estuaries Coasts 38(3):722–734

    Google Scholar 

  103. Tobias C, Giblin A, McClelland J, Tucker J, Peterson B (2003) Sediment DIN fluxes and preferential recycling of benthic microalgal nitrogen in a shallow macrotidal estuary. Mar Ecol Progr 257(8):25–36

    Google Scholar 

  104. Fulweiler RW, Brown SM, Nixon SW, Jenkins BD (2013) Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser 482:57–68

    Google Scholar 

  105. Woodin S, Volkenborn N, Pilditch CA, Lohrer AM, Wethey DS, Hewitt JE, Thrush SF (2016) Same pattern, different mechanism: locking onto the role of key species in seafloor ecosystem process. Sci Rep 6:26678

    Google Scholar 

  106. Gladstone-Gallagher RV, Hughes RW, Douglas EJ, Pilditch CA (2018) Biomass-dependent seagrass resilience to sediment eutrophication. J Exp Mar Biol Ecol 501:54–64

    Google Scholar 

  107. You Y, Thrush SF, Hope JA (2020) The impacts of polyethylene terephthalate microplastics (mPETs) on ecosystem functionality in marine sediment. Mar Pollut Bull 160:111624

    Google Scholar 

  108. Huang Y, Li W, Wang F, Yao J, Yang W, Han L, Lin D, Min B, Zhi Y, Grieger K, Yao J (2021) Effect of microplastics on ecosystem functioning: microbial nitrogen removal mediated by benthic invertebrates. Sci Total Environ 754:142133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, B., Liu, Q., Li, J., Wang, C., Li, Y., Zhang, C. (2021). Microplastic Pollution in Marine Environment: Occurrence, Fate, and Effects (With a Specific Focus on Biogeochemical Carbon and Nitrogen Cycles). In: Muthu, S.S. (eds) Microplastic Pollution. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-0297-9_4

Download citation

Publish with us

Policies and ethics

Navigation