An Update on Antiretroviral Therapy

  • Chapter
  • First Online:
Antiviral Drug Discovery and Development

Abstract

Human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) still claim many lives across the world. However, research efforts during the last 40 years have led to the approval of over 30 antiretroviral drugs and the introduction of combination therapies that have turned HIV infection into a chronic but manageable disease. In this chapter, we provide an update on current available drugs and treatments, as well as future prospects towards reducing pill burden and develo** long-acting drugs and novel antiretroviral therapies. In addition, we summarize efforts to cure HIV, including pharmaceutical strategies focused on the elimination of the virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

ALLINI:

Allosteric integrase inhibitor

AZT:

3′-azido-3′-deoxythymidine

bNAb:

Broadly neutralizing antibody

CA:

Capsid protein

CRISPR:

Clustered regularly interspaced short palindromic repeats

dsDNA:

Double-stranded DNA

EFdA:

4′-ethynyl-2-fluoro-2′-deoxyadenosine

FDA:

Food and Drug Administration

HAART:

Highly active antiretroviral therapy

HAM/TSP:

HTLV-1-associated myelopathy/tropical spastic paraparesis

HBV:

Hepatitis B virus

HDAC:

Histone deacetylases

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

HTLV:

Human T cell lymphotropic virus

IC50:

50% maximal inhibitory concentration

LEDGF:

Lens epithelium-derived growth factor

LRA:

Latency-reversing agents

NC:

Nucleocapsid protein

NNRTI:

Non-nucleoside reverse transcriptase inhibitor

NRTI:

Nucleoside reverse transcriptase inhi-bitor

RT:

Reverse transcriptase

SHIV:

Simian/human immunodeficiency virus

TAF:

Tenofovir alafenamide

TDF:

Tenofovir disoproxil fumarate

TLR:

Toll-like receptors

WHO:

World Health Organization

References

  1. Menéndez-Arias L, Sebastián-Martín A, Álvarez M (2017) Viral reverse transcriptases. Virus Res 234:153–176

    Article  PubMed  CAS  Google Scholar 

  2. Eberle J, Gürtler L (2012) HIV types, groups, subtypes and recombinant forms: errors in replication, selection pressure and quasispecies. Intervirology 55:79–83

    Article  PubMed  Google Scholar 

  3. Afonso PV, Cassar O, Gessain A (2019) Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes. Retrovirology 16:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahieux R, Gessain A (2011) HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 3:1074–1090

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pinto-Santini DM, Stenbak CR, Linial ML (2017) Foamy virus zoonotic infections. Retrovirology 14:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. UNAIDS (2020) Global factsheets. World Health Organization, Geneva. http://aidsinfor.unaids.org. Accessed 30 Oct 2020

  7. Dwyer-Lindgren L, Cork MA, Sligar A, Steuben KM, Wilson KF, Provost NR, Mayala BK, VanderHeide JD, Collison ML, Hall JB et al (2019) Map** HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 570:189–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Phanuphak N, Gulick RM (2020) HIV treatment and prevention 2019: current standards of care. Curr Opin HIV AIDS 15:4–12

    Article  PubMed  Google Scholar 

  9. Menéndez-Arias L (2002) Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol Sci 23:381–388

    Article  PubMed  Google Scholar 

  10. Menéndez-Arias L (2013) Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Antiviral Res 98:93–120

    Article  PubMed  CAS  Google Scholar 

  11. Engelman AN (2019) Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 294:15137–15157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Menéndez-Arias L, Tözsér J (2008) HIV-1 protease inhibitors: effects on HIV-2 replication and resistance. Trends Pharmacol Sci 29:42–49

    Article  PubMed  CAS  Google Scholar 

  13. Lee FJ, Amin J, Carr A (2014) Efficacy of initial antiretroviral therapy for HIV-1 infection in adults: a systematic review and meta-analysis of 114 studies with up to 144 weeks’ follow-up. PLoS One 9:e97482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. European AIDS Clinical Society (EACS) (2019) European guidelines for treatment of HIV-positive adults in Europe:2018., version 9.1. http://www.eacsociety.org/files/2018_guidelines-9.1-english.pdf. Accessed 30 October 2020

  15. Panel on Antiretroviral Guidelines for Adults and Adolescents (2019) Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. Department of Health and Human Services (12/18/19). https://aidsinfo.nih.gov/guidelines/html/1/adult-and-adolescent-arv/0. Accessed 30 Oct 2020

  16. Saag MS, Benson CA, Gandhi RT, Hoy JF, Landovitz RJ, Mugavero MJ, Sax PE, Smith DM, Thompson MA, Buchbinder SP et al (2018) Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the international antiviral society-USA panel. JAMA 320:379–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallant J, Lazzarin A, Mills A, Orkin C, Podzamczer D, Tebas P, Girard PM, Brar I, Daar ES, Wohl D et al (2017) Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): a double-blind, multicentre, phase 3, randomised controlled non-inferiority trial. Lancet 390:2063–2072

    Article  CAS  PubMed  Google Scholar 

  18. Sax PE, Pozniak A, Montes ML, Koenig E, DeJesus E, Stellbrink HJ, Antinori A, Workowski K, Slim J, Reynes J et al (2017) Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380-1490): a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet 390:2073-2082

    Google Scholar 

  19. Scott LJ (2020) Dolutegravir/lamivudine single-tablet regimen: a review in HIV-1 infection. Drugs 80:61–72

    Article  CAS  PubMed  Google Scholar 

  20. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, Jägel-Guedes E, Rugina S, Kozyrev O, Cid JF et al (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358:568–579

    Article  PubMed  Google Scholar 

  21. Borrás-Blasco J, Navarro-Ruiz A, Borrás C, Casterá E (2008) Adverse cutaneous reactions associated with the newest antiretroviral drugs in patients with human immunodeficiency virus infection. J Antimicrob Chemother 62:879–888

    Article  PubMed  CAS  Google Scholar 

  22. Tao X, Lu Y, Zhou Y, Zhang L, Chen Y (2020) Efficacy and safety of the regimens containing tenofovir alafenamide versus tenofovir disoproxil fumarate in fixed-dose single-tablet regimens for initial treatment of HIV-1 infection: a meta-analysis of randomized controlled trials. Int J Infect Dis 93:108–117

    Article  CAS  PubMed  Google Scholar 

  23. Beadle JR, Aldern KA, Zhang XQ, Valiaeva N, Hostetler KY, Schooley RT (2019) Octadecyloxyethyl benzyl tenofovir: a novel tenofovir diester provides sustained intracellular levels of tenofovir diphosphate. Antiviral Res 171:104614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apostolova N, Funes HA, Blas-Garcia A, Galindo MJ, Alvarez A, Esplugues JV (2015) Efavirenz and the CNS: what we already know and questions that need to be answered. J Antimicrob Chemother 70:2693–2708

    Article  CAS  PubMed  Google Scholar 

  25. Venter WDF, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, Serenata C, Akpomiemie G, Qavi A, Chandiwana N et al (2019) Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N Engl J Med 381:803–815

    Article  CAS  PubMed  Google Scholar 

  26. Sax PE, Erlandson KM, Lake JE, McComsey GA, Orkin C, Esser S, Brown TT, Rockstroh JK, Wei X, Carter CC et al (2020) Weight gain following initiation of antiretroviral therapy: Risk factors in randomized comparative clinical trials. Clin Infect Dis 71:1379-1389

    Google Scholar 

  27. Menéndez-Arias L (2009) Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 1:1137–1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    Article  CAS  PubMed  Google Scholar 

  29. Clotet B, Menéndez-Arias L, Schapiro JM, Kuritzkes D, Burger D, Rockstroh J, Boucher CA, Richman DD, Paredes R (2017) The HIV & hepatitis drug resistance and pk guide, 16th edn. Fundació de Lluita contra la SIDA, Barcelona

    Google Scholar 

  30. Wensing AM, Calvez V, Ceccherini-Silberstein F, Charpentier C, Günthard HF, Paredes R, Shafer RW, Richman DD (2019) 2019 update of the drug resistance mutations in HIV-1. Top Antivir Med 27:111–121

    PubMed  PubMed Central  Google Scholar 

  31. Menéndez-Arias L, Alvarez M (2014) Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Res 102:70–86

    Article  PubMed  CAS  Google Scholar 

  32. Puertas MC, Ploumidis G, Ploumidis M, Fumero E, Clotet B, Walworth CM, Petropoulos CJ, Martinez-Picado J (2020) Pan-resistant HIV-1 emergence in the era of integrase strand-transfer inhibitors: a case report. Lancet Microbe 1:e130–e135

    Article  CAS  PubMed  Google Scholar 

  33. Baxter JD, Dunn D, White E, Sharma S, Geretti AM, Kozal MJ, Johnson MA, Jacoby S, Llibre JM, Lundgren J et al (2015) Global HIV-1 transmitted drug resistance in the INSIGHT strategic timing of AntiRetroviral treatment (START) trial. HIV Med 16(Suppl 1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. WHO (2019) HIV drug resistance report 2019. World Health Organization, Geneva

    Google Scholar 

  35. Girón-Callejas A, García-Morales C, Mendizabal-Burastero R, Meza RI, Sierra T, Tapia-Trejo D, Pérez-García M, Quiroz-Morales VS, Paredes M, Rodríguez A et al (2020) High level of pre-treatment and acquired HIV drug resistance in Honduras: a nationally representative survey, 2016-17. J Antimicrob Chemother 75:1932–1942

    Article  PubMed  CAS  Google Scholar 

  36. Ndashimye E, Arts EJ (2019) The urgent need for more potent antiretroviral therapy in low-income countries to achieve UNAIDS 90-90-90 and complete eradication of AIDS by 2030. Infect Dis Poverty 8:63

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kagan RM, Dunn KJ, Snell GP, Nettles RE, Kaufman HW (2019) Trends in HIV-1 drug resistance mutations from a U.S. reference laboratory from 2006 to 2017. AIDS Res Hum Retrovir 35:698–709

    Article  CAS  PubMed  Google Scholar 

  38. Zuo L, Liu K, Liu H, Hu Y, Zhang Z, Qin J, Xu Q, Peng K, ** X, Wang JH et al (2020) Trend of HIV-1 drug resistance in China: a systematic review and meta-analysis of data accumulated over 17 years (2001-2017). E Clin Med 18:100238

    Google Scholar 

  39. van de Laar MJ, Bosman A, Pharris A, Andersson E, Assoumou L, Ay E, Bannert N, Bartmeyer B, Brady M, Chaix ML et al (2019) Piloting a surveillance system for HIV drug resistance in the European Union. Euro Surveill 24:1800390

    PubMed Central  Google Scholar 

  40. Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P (2021) Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 50:4514-4540

    Google Scholar 

  41. Schürmann D, Rudd DJ, Zhang S, De Lepeleire I, Robberechts M, Friedman E, Keicher C, Hüser A, Hofmann J, Grobler JA et al (2020) Safety, pharmacokinetics, and antiretroviral activity of islatravir (ISL, MK-8591), a novel nucleoside reverse transcriptase translocation inhibitor, following single-dose administration to treatment-naive adults infected with HIV-1: an open-label, phase 1b, consecutive-panel trial. Lancet HIV 7:e164–e172

    Article  PubMed  Google Scholar 

  42. Barrett SE, Teller RS, Forster SP, Li L, Mackey MA, Skomski D, Yang Z, Fillgrove KL, Doto GJ, Wood SL et al (2018) Extended-duration MK-8591-eluting implant as a candidate for HIV treatment and prevention. Antimicrob Agents Chemother 62:e01058–18

    Google Scholar 

  43. Michailidis E, Huber AD, Ryan EM, Ong YT, Leslie MD, Matzek KB, Singh K, Marchand B, Hagedorn AN, Kirby KA et al (2014) 4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) inhibits HIV-1 reverse transcriptase with multiple mechanisms. J Biol Chem 289:24533–24548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salie ZL, Kirby KA, Michailidis E, Marchand B, Singh K, Rohan LC, Kodama EN, Mitsuya H, Parniak MA, Sarafianos SG (2016) Structural basis of HIV inhibition by translocation-defective RT inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA). Proc Natl Acad Sci U S A 113:9274–9279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Molina J-M, Yarzdanpanah Y, Afani Saud A, Bettacchi C, Chahin Anania C, DeJesus E, Klopfer SO, Eves K, Robertson MN, Hwang C et al (2019) Tolerability, safety, and efficacy of MK-8591 at doses of 0.25 to 2.25 mg QD in combination with doravirine and lamivudine through 24 weeks in treatment-naive adults with HIV-1 infection. In: Proceedings of the 10th IAS conference on HIV science (IAS 2019); 21–24 July 2019; Mexico City, Mexico

    Google Scholar 

  46. Markowitz M, Grobler JA (2020) Islatravir for the treatment and prevention of infection with the human immunodeficiency virus type 1. Curr Opin HIV AIDS 15:27–32

    Article  CAS  PubMed  Google Scholar 

  47. Kawamoto A, Kodama E, Sarafianos SG, Sakagami Y, Kohgo S, Kitano K, Ashida N, Iwai Y, Hayakawa H, Nakata H et al (2008) 2′-deoxy-4'-C-ethynyl-2-halo-adenosines active against drug-resistant human immunodeficiency virus type 1 variants. Int J Biochem Cell Biol 40:2410–2420

    Article  CAS  PubMed  Google Scholar 

  48. Yang G, Paintsil E, Dutschman GE, Grill SP, Wang CJ, Wang J, Tanaka H, Hamasaki T, Baba M, Cheng YC (2009) Impact of novel human immunodeficiency virus type 1 reverse transcriptase mutations P119S and T165A on 4′-ethynylthymidine analog resistance profile. Antimicrob Agents Chemother 53:4640–4646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gregson J, Rhee SY, Datir R, Pillay D, Perno CF, Derache A, Shafer RS, Gupta RK (2020) Human immunodeficiency virus-1 viral load is elevated in individuals with reverse-transcriptase mutation M184V/I during virological failure of first-line antiretroviral therapy and is associated with compensatory mutation L74I. J Infect Dis 222:1108–1116

    Article  CAS  PubMed  Google Scholar 

  50. Cihlar T, Ray AS, Boojamra CG, Zhang L, Hui H, Laflamme G, Vela JE, Grant D, Chen J, Myrick F et al (2008) Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother 52:655–665

    Article  CAS  PubMed  Google Scholar 

  51. Boyle A, Moss CE, Marzolini C, Khoo S (2019) Clinical pharmacodynamics, pharmacokinetics, and drug interaction profile of doravirine. Clin Pharmacokinet 58:1553–1565

    Article  CAS  PubMed  Google Scholar 

  52. Hwang C, Lai MT, Hazuda D (2020) Rational design of doravirine: from bench to patients. ACS Infect Dis 6:64–73

    Article  CAS  PubMed  Google Scholar 

  53. Al-Salama ZT (2017) Elsulfavirine: first global approval. Drugs 77:1811–1816

    Article  CAS  PubMed  Google Scholar 

  54. Lee WG, Frey KM, Gallardo-Macias R, Spasov KA, Bollini M, Anderson KS, Jorgensen WL (2014) Picomolar inhibitors of HIV-1 reverse transcriptase: design and crystallography of naphthyl phenyl ethers. ACS Med Chem Lett 5:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y, De Clercq E, Li G (2019) Current and emerging non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 treatment. Expert Opin Drug Metab Toxicol 15:813–829

    Article  PubMed  CAS  Google Scholar 

  56. Rhee SY, Grant PM, Tzou PL, Barrow G, Harrigan PR, Ioannidis JPA, Shafer RW (2019) A systematic review of the genetic mechanisms of dolutegravir resistance. J Antimicrob Chemother 74:3135–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith SJ, Zhao XZ, Burke TR Jr, Hughes SH (2018) Efficacies of cabotegravir and bictegravir against drug-resistant HIV-1 integrase mutants. Retrovirology 15:37

    Google Scholar 

  58. Tsiang M, Jones GS, Goldsmith J, Mulato A, Hansen D, Kan E, Tsai L, Bam RA, Stepan G, Stray KM et al (2016) Antiviral activity of bictegravir (GS-9883), a novel potent HIV-1 integrase strand transfer inhibitor with an improved resistance profile. Antimicrob Agents Chemother 60:7086–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saladini F, Giannini A, Boccuto A, Dragoni F, Appendino A, Albanesi E, Vicenti I, Zazzi M (2019) Comparable in vitro activities of second-generation HIV-1 integrase strand transfer inhibitors (INSTIs) on HIV-1 clinical isolates with INSTI resistance mutations. Antimicrob Agents Chemother 64:e01717–19

    Google Scholar 

  60. Smith SJ, Zhao XZ, Passos DO, Lyumkis D, Burke TR Jr, Hughes SH (2020) HIV-1 integrase inhibitors that are active against drug-resistant integrase mutants. Antimicrob Agents Chemother 64:00611–20

    Google Scholar 

  61. Cook NJ, Li W, Berta D, Badaoui M, Ballandras-Colas A, Nans A, Kotecha A, Rosta E, Engelman AN, Cherepanov P (2020) Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science 367:806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whitfield T, Torkington A, van Halsema C (2016) Profile of cabotegravir and its potential in the treatment and prevention of HIV-1 infection: evidence to date. HIV AIDS (Auckl) 8:157–164

    CAS  Google Scholar 

  63. Swindells S, Andrade-Villanueva JF, Richmond GJ, Rizzardini G, Baumgarten A, Masiá M, Latiff G, Pokrovsky V, Bredeek F, Smith G et al (2020) Long-acting cabotegravir and rilpivirine for maintenance of HIV-1 suppression. N Engl J Med 382:1112–1123

    Article  CAS  PubMed  Google Scholar 

  64. Kulkarni TA, Bade AN, Sillman B, Shetty BLD, Wojtkiewicz MS, Gautam N, Hilaire JR, Sravanam S, Szlachetka A, Lamberty BG et al (2020) A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater 19:910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Markham A (2020) Cabotegravir plus rilpivirine: first approval. Drugs 80:915–922

    Article  CAS  PubMed  Google Scholar 

  66. Hoesley CJ, Chen BA, Anderson PL, Dezzutti CS, Strizki J, Sprinkle C, Heard F, Bauermeister J, Hall W, Jacobson C et al (2019) Phase 1 safety and pharmacokinetics study of MK-2048/vicriviroc (MK-4176)/MK-2048A intravaginal rings. Clin Infect Dis 68:1136–1143

    Article  CAS  PubMed  Google Scholar 

  67. Liu AY, Zhang J, Anderson PL, Wagner T, Pan Z, Peda M, Gomez K, Beamer M, Jacobson C, Strizki J et al (2019) Phase 1 pharmacokinetic trial of 2 intravaginal rings containing different dose strengths of vicriviroc (MK-4176) and MK-2048. Clin Infect Dis 68:1129–1135

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura T, Nakamura T, Amano M, Miyakawa T, Yamagata Y, Matsuoka M, Nakata H (2020) A conformational escape reaction of HIV-1 against an allosteric integrase inhibitor. J Virol 94:e00486–20

    Google Scholar 

  69. Ghosh AK, Osswald HL, Prato G (2016) Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J Med Chem 59:5172–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bulut H, Hattori SI, Aoki-Ogata H, Hayashi H, Das D, Aoki M, Davis DA, Rao KV, Nyalapatla PR, Ghosh AK et al (2020) Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Sci Rep 10:10664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hattori SI, Hayashi H, Bulut H, Rao KV, Nyalapatla PR, Hasegawa K, Aoki M, Ghosh AK, Mitsuya H (2019) Halogen bond interactions of novel HIV-1 protease inhibitors (PI) (GRL-001-15 and GRL-003-15) with the flap of protease are critical for their potent activity against wild-type HIV-1 and multi-PI-resistant variants. Antimicrob Agents Chemother 63:e02635–18

    Google Scholar 

  72. Subbaiah MAM, Mandlekar S, Desikan S, Ramar T, Subramani L, Annadurai M, Desai SD, Sinha S, Jenkins SM, Krystal MR et al (2019) Design, synthesis, and pharmacokinetic evaluation of phosphate and amino acid ester prodrugs for improving the oral bioavailability of the HIV-1 protease inhibitor atazanavir. J Med Chem 62:3553–3574

    Article  CAS  Google Scholar 

  73. Banoub MG, Bade AN, Lin Z, Cobb D, Gautam N, Dyavar Shetty BL, Wojtkiewicz M, Alnouti Y, McMillan J, Gendelman HE et al (2020) Synthesis and characterization of long-acting darunavir prodrugs. Mol Pharm 17:155–166

    Article  CAS  PubMed  Google Scholar 

  74. Zhang DW, Luo RH, Xu L, Yang LM, Xu XS, Bedwell GJ, Engelman AN, Zheng YT, Chang S (2019) A HTRF based competitive binding assay for screening specific inhibitors of HIV-1 capsid assembly targeting the C-terminal domain of capsid. Antiviral Res 169:104544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85:542–549

    Article  CAS  PubMed  Google Scholar 

  76. Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken C, James LC (2014) Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog 10:e1004459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. McArthur C, Gallazzi F, Quinn TP, Singh K (2019) HIV capsid inhibitors beyond PF74. Diseases 7:e56

    Article  PubMed  CAS  Google Scholar 

  78. Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR, Rowe W, Begley R, Chiu A, Mulato A, Hansen D et al (2020) Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 584:614–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gupta S, Louis JM, Tycko R (2020) Effects of an HIV-1 maturation inhibitor on the structure and dynamics of CA-SP1 junction helices in virus-like particles. Proc Natl Acad Sci U S A 117:10286–10293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou J, Chen CH, Aiken C (2006) Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3′,3′-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J Virol 80:12095–12101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morales-Ramirez J, Bogner JR, Molina JM, Lombaard J, Dicker IB, Stock DA, DeGrosky M, Gartland M, Pene Dumitrescu T, Min S et al (2018) Safety, efficacy, and dose response of the maturation inhibitor GSK3532795 (formerly known as BMS-955176) plus tenofovir/emtricitabine once daily in treatment-naive HIV-1-infected adults: week 24 primary analysis from a randomized phase IIb trial. PLoS One 13:e0205368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. DeJesus E, Harward S, Jewell RC, Johnson M, Dumont E, Wilches V, Halliday F, Talarico CL, Jeffrey J, Gan J et al (2020) A phase IIa study evaluating safety, pharmacokinetics, and antiviral activity of GSK2838232, a novel, second-generation maturation inhibitor, in participants with human immunodeficiency virus type 1 infection. Clin Infect Dis 71:1255–1262

    Article  CAS  PubMed  Google Scholar 

  83. Meanwell NA, Krystal MR, Nowicka-Sans B, Langley DR, Conlon DA, Eastgate MD, Grasela DM, Timmins P, Wang T, Kadow JF (2018) Inhibitors of HIV-1 attachment: the discovery and development of temsavir and its prodrug fostemsavir. J Med Chem 61:62–80

    Article  CAS  PubMed  Google Scholar 

  84. Kozal M, Aberg J, Pialoux G, Cahn P, Thompson M, Molina JM, Grinsztejn B, Diaz R, Castagna A, Kumar P et al (2020) Fostemsavir in adults with multidrug-resistant HIV-1 infection. N Engl J Med 382:1232–1243

    Article  CAS  PubMed  Google Scholar 

  85. Liu T, Huang B, Zhan P, De Clercq E, Liu X (2014) Discovery of small molecular inhibitors targeting HIV-1 gp120-CD4 interaction drived from BMS-378806. Eur J Med Chem 86:481–490

    Article  CAS  PubMed  Google Scholar 

  86. Zou S, Zhang S, Gaffney A, Ding H, Lu M, Grover JR, Farrell M, Nguyen HT, Zhao C, Anang S et al (2020) Long-acting BMS-378806 analogues stabilize the state-1 conformation of the human immunodeficiency virus type 1 envelope glycoproteins. J Virol 94:e00148–20

    Google Scholar 

  87. Pace CS, Fordyce MW, Franco D, Kao C-Y, Seaman MS, Ho DD (2013) Anti-CD4 monoclonal antibody ibalizumab exhibits breadth and potency against HIV-1, with natural resistance mediated by the loss of a V5 glycan in envelope. J Acquir Immune Defic Syndr 62:1–9

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Cao W, Sun M, Li T (2020) Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 9:194–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T, Wiehe K, Alam SM, Aussedat B, Walkowicz WE, Hwang KK et al (2017) Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci Transl Med 9:eaai7514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Caskey M, Klein F, Nussenzweig MC (2016) Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N Engl J Med 375:2019–2021

    Article  CAS  PubMed  Google Scholar 

  91. McCoy LE, Burton DR (2017) Identification and specificity of broadly neutralizing antibodies against HIV. Immunol Rev 275:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang H, Gristick HB, Scharf L, West AP, Galimidi RP, Seaman MS, Freund NT, Nussenzweig MC, Bjorkman PJ (2017) Asymmetric recognition of HIV-1 envelope trimer by V1V2 loop-targeting antibodies. Elife 6:e27389

    Google Scholar 

  93. Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T, Kreider EF, Murrell B, Pfeifer N, Nogueira L, Oliveira TY et al (2017) Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat Med 23:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P, Enama ME, Plummer S, Holman L, Hendel CS et al (2015) Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med 7:319ra206

    Article  PubMed  CAS  Google Scholar 

  95. Cale EM, Bai H, Bose M, Messina MA, Colby DJ, Sanders-Buell E, Dearlove B, Li Y, Engeman E, Silas D et al (2020) Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. J Clin Invest 130:3299–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Padte NN, Yu J, Huang Y, Ho DD (2018) Engineering multi-specific antibodies against HIV-1. Retrovirology 15:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dhody K, Pourhassan N, Kazempour K, Green D, Badri S, Mekonnen H, Burger D, Maddon PJ (2018) PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV Clin Trials 19:85–93

    Article  CAS  PubMed  Google Scholar 

  98. Kaplon H, Muralidharan M, Schneider Z, Reichert JM (2020) Antibodies to watch in 2020. MAbs 12:1703531

    Article  PubMed  CAS  Google Scholar 

  99. De Clercq E (2019) Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 27:2040206619829382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lagresle-Peyrou C, Lefrère F, Magrin E, Ribeil JA, Romano O, Weber L, Magnani A, Sadek H, Plantier C, Gabrion A et al (2018) Plerixafor enables safe, rapid, efficient mobilization of hematopoietic stem cells in sickle cell disease patients after exchange transfusion. Haematologica 103:778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang J, Tannous BA, Poznansky MC, Chen H (2020) CXCR4 antagonist AMD3100 (plerixafor): from an impurity to a therapeutic agent. Pharmacol Res 159:105010

    Article  CAS  PubMed  Google Scholar 

  102. Zhang C, Zhu R, Cao Q, Yang X, Huang Z, An J (2020) Discoveries and developments of CXCR4-targeted HIV-1 entry inhibitors. Exp Biol Med (Maywood) 245:477–485

    Article  CAS  Google Scholar 

  103. Zhang H, ** R, Yao C, Zhang T, Wang M, **a W, Peng H, Wang X, Lu R, Wang C et al (2016) Combination of long-acting HIV fusion inhibitor albuvirtide and LPV/r showed potent efficacy in HIV-1 patients. AIDS Res Ther 13:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Tramontano E, Corona A, Menéndez-Arias L (2019) Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Res 171:104613

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Gao P, Menéndez-Arias L, Liu X, Zhan P (2018) Update on recent developments in small molecular HIV-1 RNase H inhibitors (2013-2016): opportunities and challenges. Curr Med Chem 25:1682–1702

    Article  CAS  PubMed  Google Scholar 

  106. Gill MSA, Hassan SS, Ahemad N (2019) Evolution of HIV-1 reverse transcriptase and integrase dual inhibitors: recent advances and developments. Eur J Med Chem 179:423–448

    Article  CAS  PubMed  Google Scholar 

  107. Corona A, Meleddu R, Esposito F, Distinto S, Bianco G, Masaoka T, Maccioni E, Menéndez-Arias L, Alcaro S, Le Grice SF et al (2016) Ribonuclease H/DNA polymerase HIV-1 reverse transcriptase dual inhibitor: mechanistic studies on the allosteric mode of action of isatin-based compound RMNC6. PLoS One 11:e0147225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yang Y, Zhu J, Hassink M, Jenkins LMM, Wan Y, Appella DH, Xu J, Appella E, Zhang X (2017) A novel preventive strategy against HIV-1 infection: combinatorial use of inhibitors targeting the nucleocapsid and fusion proteins. Emerg Microbes Infect 6:e40

    Article  PubMed  PubMed Central  Google Scholar 

  109. Iraci N, Tabarrini O, Santi C, Sancineto L (2018) NCp7: targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov Today 23:687–695

    Article  CAS  PubMed  Google Scholar 

  110. Sancineto L, Iraci N, Tabarrini O, Santi C (2018) NCp7: targeting a multitasking protein for next-generation anti-HIV drug development part 1: covalent inhibitors. Drug Discov Today 23:260–271

    Article  CAS  PubMed  Google Scholar 

  111. Rashamuse TJ, Njengele Z, Coyanis EM, Sayed Y, Mosebi S, Bode ML (2020) Design, synthesis and biological evaluation of novel 2-(5-aryl-1H-imidazol-1-yl) derivatives as potential inhibitors of the HIV-1 Vpu and host BST-2 protein interaction. Eur J Med Chem 190:112111

    Article  PubMed  CAS  Google Scholar 

  112. Azimi FC, Lee JE (2020) Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 29:391–406

    Article  CAS  PubMed  Google Scholar 

  113. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, van Lunzen J, Corbelli GM, Estrada V, Geretti AM, Beloukas A et al (2016) Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy. JAMA 316:171–181. Erratum in: JAMA (2016) 316:667. Erratum in: JAMA (2016) 316:2048

    Article  PubMed  Google Scholar 

  114. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, Degen O, Corbelli GM, Estrada V, Geretti AM, Beloukas A et al (2019) Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study. Lancet 393:2428–2438

    Article  PubMed  PubMed Central  Google Scholar 

  115. Eisinger RW, Folkers GK, Fauci AS (2019) Ending the human immunodeficiency virus pandemic: optimizing the prevention and treatment toolkits. Clin Infect Dis 69:2212–2217

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mugwanya KK, Hendrix CW, Mugo NR, Marzinke M, Katabira ET, Ngure K, Semiyaga NB, John-Stewart G, Muwonge TR, Muthuri G et al (2016) Pre-exposure prophylaxis use by breastfeeding HIV-uninfected women: a prospective short-term study of antiretroviral excretion in breast milk and infant absorption. PLoS Med 13:e1002132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. WHO (2017) Preventing HIV during pregnancy and breastfeeding in the context of PrEP - technical brief. World Health Organization, Geneva

    Google Scholar 

  118. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender V, Mgodi NM, Matovu Kiweewa F, Nair G, Mhlanga F et al (2016) Use of a vaginal ring containing dapivirine for HIV-1 prevention in women. N Engl J Med 375:2121–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nel A, van Niekerk N, Kapiga S, Bekker LG, Gama C, Gill K, Kamali A, Kotze P, Louw C, Mabude Z et al (2016) Safety and efficacy of a dapivirine vaginal ring for HIV prevention in women. N Engl J Med 375:2133–2143

    Article  CAS  PubMed  Google Scholar 

  120. Srinivas N, Cottrell M, Maffuid K, Prince HA, Nelson JAE, White N, Sykes C, Dellon ES, Madanick RD, Shaheen NJ et al (2020) Translational approach to predicting the efficacy of maraviroc-based regimens as HIV preexposure prophylaxis. Antimicrob Agents Chemother 64:e01729–19

    Google Scholar 

  121. Weld ED, Flexner C (2020) Long-acting implants to treat and prevent HIV infection. Curr Opin HIV AIDS 15:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Landovitz RJ, Li S, Grinsztejn B, Dawood H, Liu AY, Magnus M, Hosseinipour MC, Panchia R, Cottle L, Chau G et al (2018) Safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-uninfected individuals: HPTN 077, a phase 2a randomized controlled trial. PLoS Med 15:e1002690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Gautam R, Nishimura Y, Gaughan N, Gazumyan A, Schoofs T, Buckler-White A, Seaman MS, Swihart BJ, Follmann DA, Nussenzweig MC et al (2018) A single injection of crystallizable fragment domain-modified antibodies elicits durable protection from SHIV infection. Nat Med 24:610–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L, Butler AL, Millard K, Lehmann C, Suárez I, Oliveira TY et al (2018) Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med 24:1701–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rana AI, Castillo-Mancilla JR, Tashima KT, Landovitz RL (2020) Advances in long-acting agents for the treatment of HIV infection. Drugs 80:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Singh K, Sarafianos SG, Sönnerborg A (2019) Long-acting anti-HIV drugs targeting HIV-1 reverse transcriptase and integrase. Pharmaceuticals (Basel) 12:e62

    Article  CAS  Google Scholar 

  127. Aboud M, Orkin C, Podzamczer D, Bogner JR, Baker D, Khuong-Josses MA, Parks D, Angelis K, Kahl LP, Blair EA et al (2019) Efficacy and safety of dolutegravir-rilpivirine for maintenance of virological suppression in adults with HIV-1: 100-week data from the randomised, open-label, phase 3 SWORD-1 and SWORD-2 studies. Lancet HIV 6:e576–e587

    Article  PubMed  Google Scholar 

  128. Overton ET, Richmond GJ, Rizzardini G, Jaeger H, Orrell C, Nagimova F, Bredeek F, García-Deltoro M, Benn PD, Wang Y et al (2020) Cabotegravir + rilpivirine every 2 months is noninferior to monthly: ATLAS-2M study. In: Conference on retroviruses and opportunistic infections (CROI). March 8-11, 2020. Boston. Abstract 34

    Google Scholar 

  129. Landovitz RJ, Li S, Eron JJ Jr, Grinsztejn B, Dawood H, Liu AY, Magnus M, Hosseinipour MC, Panchia R, Cottle L et al (2020) Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: a secondary analysis of the HPTN 077 trial. Lancet HIV 7:e472-e481

    Google Scholar 

  130. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–698

    Article  PubMed  Google Scholar 

  131. Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D, Eisele E, Haase A, Ho YC, Hütter G et al (2013) Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog 9:e1003347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M, McCoy LE, Griffith SA, Thornhill J, Alrubayyi A et al (2020) Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV 7:e340–e347

    Article  PubMed  PubMed Central  Google Scholar 

  133. Jensen B-E, Knops E, Lübke N, Wensing A, Martinez-Picado J, Kaiser R, Nijhuis M, Salgado M, Harrer T, Heger E, et al (2019) Analytic treatment interruption (ATI) after allogeneic CCR5-D32 HSCT for AML in 2013. In: Conference on retroviruses and opportunistic infections (CROI). March 4–7, 2019. Seattle, WA, Abstract 394

    Google Scholar 

  134. Dash PK, Kevadiya BD, Su H, Banoub MG, Gendelman HE (2020) Pathways towards human immunodeficiency virus elimination. EBioMedicine 53:102667

    Article  PubMed  PubMed Central  Google Scholar 

  135. Margolis DM, Archin NM, Cohen MS, Eron JJ, Ferrari G, Garcia JV, Gay CL, Goonetilleke N, Joseph SB, Swanstrom R et al (2020) Curing HIV: seeking to target and clear persistent infection. Cell 181:189–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ndung'u T, McCune JM, Deeks SG (2019) Why and where an HIV cure is needed and how it might be achieved. Nature 576:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sadowski I, Hashemi FB (2019) Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cell Mol Life Sci 76:3583–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Abner E, Jordan A (2019) HIV “shock and kill” therapy: in need of revision. Antiviral Res 166:19–34

    Article  CAS  PubMed  Google Scholar 

  139. Darcis G, Van Driessche B, Van Lint C (2017) HIV latency: should we shock or lock? Trends Immunol 38:217–228

    Article  CAS  PubMed  Google Scholar 

  140. Vansant G, Bruggemans A, Janssens J, Debyser Z (2020) Block-and-lock strategies to cure HIV infection. Viruses 12:e84

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the Ministry of Science and Innovation of Spain (BIO2016-76716-R (AEI/FEDER, UE) and PID2019-104176RB-I00/AEI/10.13039/501100011033 awarded to L.M.-A.), and CSIC (2019AEP001 awarded to L.M.-A.). S.M.-A. is a predoctoral fellow of the Ministry of Science and Innovation of Spain (BES-2017-079836). An institutional grant of the Fundación Ramón Areces to the CBMSO is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Menéndez-Arias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menéndez-Arias, L., Martín-Alonso, S., Frutos-Beltrán, E. (2021). An Update on Antiretroviral Therapy. In: Liu, X., Zhan, P., Menéndez-Arias, L., Poongavanam, V. (eds) Antiviral Drug Discovery and Development. Advances in Experimental Medicine and Biology, vol 1322. Springer, Singapore. https://doi.org/10.1007/978-981-16-0267-2_2

Download citation

Publish with us

Policies and ethics

Navigation