Predicting Rebound of Ellipsoidal Granules Using SPH

  • Conference paper
  • First Online:
Proceedings of the 8th International Conference on Fracture, Fatigue and Wear (FFW 2020 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

Abstract

The accuracy of SPH in predicting rebound kinematics in granular flow applications involving non-spherical granules is investigated. For this, the rebound behavior of an ellipsoidal granule impacting an elastic substrate is analyzed for different impact angles and for different initial orientations of the granule. The friction modeling capabilities of SPH are investigated by comparing the rebound spin predicted by the SPH simulations (a) without any special friction model and (b) using Coulomb’s friction model, with DEM results. This study presents the potential of using SPH in analysing granular flow applications and brings to light the limitations associated with the existing friction modeling capabilities in SPH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duran J (2000) Sands, powders, and grains: an introduction to the physics of granular materials. Springer, New York

    Book  Google Scholar 

  2. Wu SJ, (Calvin) Sun C (2007) Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction. J Pharmaceutical Sci 96(5):1445–1450. https://doi.org/10.1002/jps.20929

  3. Yusof YA, Ng SK, Chin NL, Talib RA (2010) Compaction pressure, wall friction and surface roughness upon compaction strength of Andrographis paniculata tablets. Tribol Int 43(5):1168–1174. https://doi.org/10.1016/j.triboint.2009.12.020

    Article  Google Scholar 

  4. Delaney GW, Cleary PW, Morrison RD, Cummins S, Loveday B (2013) Predicting breakage and the evolution of rock size and shape distributions in Ag and SAG mills using DEM. Miner Eng 50–51:132–139. https://doi.org/10.1016/j.mineng.2013.01.007

    Article  Google Scholar 

  5. Delaney GW, Morrison RD, Sinnott MD, Cummins S, Cleary PW (2015) DEM modelling of non-spherical particle breakage and flow in an industrial scale cone crusher. Miner Eng 74:112–122. https://doi.org/10.1016/j.mineng.2015.01.013

    Article  Google Scholar 

  6. Vu-Quoc L, Zhang X, Walton OR (2000) A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput Methods Appl Mech Eng 187(3):483–528. https://doi.org/10.1016/S0045-7825(99)00337-0

    Article  MATH  Google Scholar 

  7. Cleary PW (2010) DEM prediction of industrial and geophysical particle flows. Particuology 8(2):106–118. https://doi.org/10.1016/j.partic.2009.05.006

    Article  Google Scholar 

  8. Cleary PW, Sawley ML (2002) DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 26(2):89–111. https://doi.org/10.1016/S0307-904X(01)00050-6

    Article  MATH  Google Scholar 

  9. Walton OR (1984) Application of molecular dynamics to macroscopic particles. Int J Eng Sci 22(8):1097–1107. https://doi.org/10.1016/0020-7225(84)90110-1

    Article  Google Scholar 

  10. Thornton C, Cummins SJ, Cleary PW (2011) An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol 210(3):189–197. https://doi.org/10.1016/j.powtec.2011.01.013

    Article  Google Scholar 

  11. Cummins SJ, Cleary PW (2011) Using distributed contacts in DEM. Appl Math Model 35(4):1904–1914. https://doi.org/10.1016/j.apm.2010.10.019

    Article  MATH  Google Scholar 

  12. Latham JP, Munjiza A, Garcia X, **ang J, Guises R (2008) Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation. Miner Eng 21(11):797–805. https://doi.org/10.1016/j.mineng.2008.05.015

    Article  Google Scholar 

  13. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759. https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  14. Hosono N, Saitoh TR, Makino J, Genda H, Ida S (2016) The giant impact simulations with density independent smoothed particle hydrodynamics. Icarus 271:131–157. https://doi.org/10.1016/j.icarus.2016.01.036

    Article  Google Scholar 

  15. Takaffoli M, Papini M (2012) Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics. Wear 274–275:50–59. https://doi.org/10.1016/j.wear.2011.08.012

    Article  Google Scholar 

  16. Hayhurst CJ, Clegg RA (1997) Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates. Int J Impact Eng 20(1):337–348. https://doi.org/10.1016/S0734-743X(97)87505-7

    Article  Google Scholar 

  17. Rabczuk T, Eibl J (2003) Simulation of high velocity concrete fragmentation using SPH/MLSPH. Int J Numer Meth Eng 56(10):1421–1444. https://doi.org/10.1002/nme.617

    Article  MATH  Google Scholar 

  18. Johnson GR, Petersen EH, Stryk RA (1993) Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations. Int J Impact Eng 14(1):385–394. https://doi.org/10.1016/0734-743X(93)90036-7

    Article  Google Scholar 

  19. Cleary PW (2008) The effect of particle shape on simple shear flows. Powder Technol 179(3):144–163. https://doi.org/10.1016/j.powtec.2007.06.018

    Article  MathSciNet  Google Scholar 

  20. Cleary PW, Morrison RD (2016) Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills. Miner Eng 86:75–95. https://doi.org/10.1016/j.mineng.2015.12.006

    Article  Google Scholar 

  21. Li WY, Yin S, Wang X-F (2010) Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method. Appl Surf Sci 256(12):3725–3734. https://doi.org/10.1016/j.apsusc.2010.01.014

    Article  Google Scholar 

  22. Gutfraind R, Savage SB (1997) Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr–Coulomb-type rheology and frictional boundary conditions. J Comput Phys 134(2):203–215. https://doi.org/10.1006/jcph.1997.5681

    Article  MATH  Google Scholar 

  23. Takaffoli M, Papini M (2012) Numerical simulation of solid particle impacts on Al6061-T6 part I: three-dimensional representation of angular particles. Wear 292–293:100–110. https://doi.org/10.1016/j.wear.2012.05.028

    Article  Google Scholar 

  24. Takaffoli M, Papini M (2012) Numerical simulation of solid particle impacts on Al6061-T6 Part II: materials removal mechanisms for impact of multiple angular particles. Wear 296(1–2):648–655. https://doi.org/10.1016/j.wear.2012.07.022

    Article  Google Scholar 

  25. Cleary PW (2004) Large scale industrial DEM modelling. Eng Comput 21(2/3/4), 169–204. https://doi.org/10.1108/02644400410519730

  26. Cleary PW, Stokes N, Hurley J (1997) Efficient collision detection for three dimensional super-ellipsoidal particles. In: Proceedings of 8th international conference on field programmable logic and applications, pp 1–7

    Google Scholar 

  27. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Johnson KL (1995) Surface interaction between elastically loaded bodies under tangential forces. In: Proceedings of the royal society of London. Series A. Mathematical and physical sciences

    Google Scholar 

  29. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  30. Cummins SJ, Rudman M (1999) An SPH projection method. J Comput Phys 152(2):584–607. https://doi.org/10.1006/jcph.1999.6246

    Article  MathSciNet  MATH  Google Scholar 

  31. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662. https://doi.org/10.1016/S0045-7825(01)00254-7

    Article  MATH  Google Scholar 

  32. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408. https://doi.org/10.1016/S0045-7825(96)01090-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Lemiale V, King PC, Rudman M, Prakash M, Cleary PW, Jahedi MZ, Gulizia S (2014) Temperature and strain rate effects in cold spray investigated by smoothed particle hydrodynamics. Surf Coat Technol 254:121–130. https://doi.org/10.1016/j.surfcoat.2014.05.071

  34. Das R, Cleary PW (2009) Simulating brittle fracture of rocks using smoothed particle hydrodynamics (Chapter 1). In: AM Korsunsky (ed) Current themes in engineering science 2008, Edited volume. America Institute of Physics, pp 1–12

    Google Scholar 

  35. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75. https://doi.org/10.1006/jcph.1993.1199

    Article  MATH  Google Scholar 

  36. Maveyraud C, Benz W, Sornette A, Sornette D (1999) Solid friction at high sliding velocities: an explicit three-dimensional dynamical smoothed particle hydrodynamics approach. J Geophys Res Solid Earth 104(B12):28769–28788. https://doi.org/10.1029/1999JB900217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhairya R. Vyas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vyas, D.R., Cummins, S.J., Rudman, M., Delaney, G.W., Cleary, P.W., Khakhar, D.V. (2021). Predicting Rebound of Ellipsoidal Granules Using SPH. In: Abdel Wahab, M. (eds) Proceedings of the 8th International Conference on Fracture, Fatigue and Wear . FFW 2020 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9893-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9893-7_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9892-0

  • Online ISBN: 978-981-15-9893-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation