A Novel Integrated Power Module with Solid-State Diode at THz Frequency—The Concept and a Possible Way to Realize It

  • Chapter
  • First Online:
Emerging Trends in Terahertz Engineering and System Technologies

Abstract

The basic concept and possible way to realize a novel power module with device and antenna integrated in the same structure using IMPATT diode has been proposed that might have useful applications at THz frequency. The power module judiciously used the idea of resonant-cap cavity for oscillator design normally used at microwave and millimetre–wave frequency, slotted disc for broadband operation and an improvised circular microstrip patch antenna integrated in the same structure. The structure is realizable with fully planer technology with some added steps in the device fabrication process. Since there is no need for transmission line or waveguide to connect the antenna with the oscillator, the transmission loss is minimized and the integrated structure will also lead to size miniaturization. The integrated power module is expected to have many applications especially at THz frequency regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.H. Siegel, Terahertz technology. IEEE Trans. MTT 50(3), 910–928 (2002)

    Article  Google Scholar 

  2. J.F. Federici, D. Gary, R. Barat, Z.H. Michalopoulou, T-Rays vs Terrorists, in IEEE Spectrum, July 2007, pp 39–44

    Google Scholar 

  3. A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham, Terahertz spectroscopy of explosives and drugs. Mater. Today 11(3), 18–26 (2008)

    Article  Google Scholar 

  4. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20, 266–280 (2005). https://doi.org/10.1088/0268-1242/20/7/018

  5. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, N. Miyoshi, Terahertz imaging diagnostics of the cancer tissues with Chemometrics technique. Appl. Phys. Lett. 90, 041102 (2007)

    Article  ADS  Google Scholar 

  6. A.Y. Pawar, D.D. Sonawane, K.B. Erande, D.V. Derle, Terahertz technology and its applications. Drug Invention Today 5, 157–163 (2013). https://doi.org/10.1016/j.dit.2013.03.009

  7. S. Kar, M. Ghosh, S. Das, A. Saha, Optical heterodyning of injection-locked laser sources—a novel technique for millimetre-wave signal generation. Int. J. Elect. Comm. Eng. 8(7), 1048–1051 (2014). ISNI:0000000091950263

    Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556, 22 April, 1994

    Google Scholar 

  9. T. **, H. Jiang, L.K. Feng, X.Y. Qian, F.M. Wu, Terahertz radiation sources based on free electron lasers and their applications. Sci. China Information Sci. 55(1), 1–15 (2012). https://doi.org/10.1007/s11432-011-4515-1

    Article  Google Scholar 

  10. A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, 1.0 THz GaN IMPATT source: effect of parasitic series resistance. J. Infrared Millimeter Terahertz Waves 39(10), 954–974 (2018)

    Article  Google Scholar 

  11. S. Kar, Modelling and characterization of microwave resonant-cap circuits. Microwave Optical Technol. Lett. 16(6), 400–403 (1997)

    Article  Google Scholar 

  12. S. Kar, An experimental technique for the design of optimized resonant-cap circuits for microwave IMPATT oscillators and amplifiers. Microwave Optical Technol. Lett. 19(2), 81–84 (1998)

    Article  Google Scholar 

  13. S. Kar, Microwave Properties of IMPATT Oscillators and Amplifiers with the Device Embedded in Normal and Modified Resonant-Cap Cavities, Ph.D. dissertation, University of Calcutta, 1989, Chap. 2, pp. 8–68

    Google Scholar 

  14. S. Kar, Microwave Engineering: Fundamentals, Design and Applications (Universities Press, 2016). ISBN: 9788173719899, 8173719896

    Google Scholar 

  15. S. Kar, S.K. Roy, A Modified Resonant-Cap Microwave IMPATT Oscillator. Indian Patent 157098, March 9, 1983 (Issued on 18.1.86)

    Google Scholar 

  16. S. Kar, S.K. Roy, A Modified Resonant-Cap Microwave IMPATT Amplifier. Indian Patent 161758, August 24, 1984 (Issued on 30.1.88)

    Google Scholar 

  17. S. Kar, S.K. Roy, Experimental studies on the improvement of the performance of resonant-cap type microwave IMPATT oscillators through appropriate modification of the resonant-cap cavity. Int. J. Electronics 75, 941–950 (1993)

    Google Scholar 

  18. S. Kar, Experimental studies on a modified resonant-cap microwave IMPATT amplifier with improved performance. Int. J. Electronics 82(5), 555–566 (1997)

    Article  Google Scholar 

  19. A.G. Derneryd, Analysis of microstrip disk antenna element. IEEE Trans. Antennas Propagat. 27(5), 660–664 (1979)

    Article  ADS  Google Scholar 

  20. S. Kar, Design and characterization of a 34 GHz IMPATT oscillator using novel coaxial-waveguide cavity. Engg. Trans. MUT, 1–5, July–December, 2007

    Google Scholar 

  21. S. Ramo, J.R. Whinnary, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1967), pp. 453–458

    Google Scholar 

  22. S. Kar, Computer-aided analysis and design of resonant-cap type microwave IMPATT sources. Int. J. Electronics 82(6), 677–687 (1997)

    Article  Google Scholar 

  23. B.A. Syrett, A broadband element for microstrip bias or tuning circuits. IEEE Trans. MTT 28(8), 925–927 (1980)

    Article  Google Scholar 

  24. R. Pierzina, J. Freyer, Power increase of millimetre-wave IMPATT diodes. IEEE Trans. MTT 33, 1228–1232 (1985)

    Article  Google Scholar 

  25. S. Kar, Computer-aided numerical characterization and experimental studies for high power operation of IMPATT oscillators. Microwave Optical Technol. Lett. 45(3), 262–265 (2005)

    Article  Google Scholar 

  26. J. Watkins, Circular resonant structure in microstrip. Electron. Lett. 5, 524–525 (1969)

    Article  ADS  Google Scholar 

  27. L.C. Shen et al., Resonant frequency of a circular disc printed circuit antenna. IEEE Trans. Antennas Propagat. 25, 595–596 (1977)

    Article  ADS  Google Scholar 

  28. I.J. Bhal, P. Bhartia, Microstrip Antnnas (Artech House, 1980)

    Google Scholar 

Download references

Acknowledgements

I am sincerely thankful to Mr. Amitesh Kumar, Scientist of SAMEER Kolkata Centre, India, for hel** me to draw professionally all the diagrams presented in this chapter. I am also thankful to Prof. Hiroshi Inokawa of Research Institute of Electronics, Shizuoka University, Japan, for his illuminating suggestions regarding THz IMPATT diode. Finally, I would like to thank Dr. Arindam Biswas of Kazi Nazrul University, India, and Dr. Aritra Acharyya of Cooch Behar Govt. Engineering College, India, for having fruitful discussion on many issues related to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subal Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kar, S. (2021). A Novel Integrated Power Module with Solid-State Diode at THz Frequency—The Concept and a Possible Way to Realize It. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H. (eds) Emerging Trends in Terahertz Engineering and System Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-9766-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9766-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9765-7

  • Online ISBN: 978-981-15-9766-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation