Chemical Signal Dissemination Through Infochemicals

  • Chapter
  • First Online:
Microbial Metatranscriptomics Belowground

Abstract

Every species has its own way of communication with diverse range of complexity that is relatively simplified in case of higher organisms while relatively complex in lower organisms like insects. Infochemical mediated chemical signal dissemination is very unanimous mode of communication in insects. Inability of lower organisms to emit acoustic signals enables them to adopt the infochemical mediated communication. Infochemicals comprise all forms of chemicals involved in communication process whether it is intraspecific or interspecific. Chemicals responsible for intraspecific communication are termed as pheromones while it is allelochemicals in case of interspecific communication. Infochemicals based communication has procured its efficiency in various environmental conditions such as rocks, aquatic, soil, and air, etc. Chemically these infochemicals represent diverse range of functional groups such as hydrocarbons, proteins, peptides, lactones, terpenes, amino acids, carbohydrates, lipids, phenolics, etc. A number of signal emitters and receptors are present in insects regulated by a collection of genes for its better effectiveness. Chemical diversity and the gene regulated signal dissemination are the two factors responsible for specificity of the infochemical communication. These infochemicals regulate a range of social functions in insects such as mating, aggregation, trailing, alarming, protection from enemies, aphrodisiac, etc. Also, utilization of these infochemicals is an alternate way of providing the pathways for insect management by mating disruption, mass trap**, monitoring of pest infestation, mass annihilation, etc. Thereby, these infochemicals can be an important component of sustainable management of insect pests and also Integrated Pest Management (IPM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson MN (2012) Mechanisms of odor coding in coniferous bark beetles: from neuron to behavior and application. Psyche

    Google Scholar 

  • Blum MS, Portocarrero CA (1964) Chemical releasers of social behavior IV. The hindgut as the source of the odor trail pheromone in the Neotropical army ant genus Eciton. Ann Entomol Soc Am 57(6):793–794

    Article  Google Scholar 

  • Blum MS, Ross GN (1965) Chemical releasers of social behavior V. source, specificity, and properties of the odour trail pheromone of Tetramorium guineense (F.)(Formicidae: Myrmicinae). J Insect Physiol 11(7):857–868

    Article  CAS  Google Scholar 

  • Blum MS, Wilson EO (1964) The anatomical source of trail substances in formicine ants. Psyche 71(1):28–31

    Article  CAS  Google Scholar 

  • Blum MS, Warter SL, Monroe RS, Chidester JC (1963) Chemical releasers of social behavior I. Methyl-n-amyl ketone in Iridomyrmex pruinosus (Roger)(Formicidae: Dolichoderinae). J Insect Physiol 9(6):881–885

    Article  CAS  Google Scholar 

  • Boch R, Shearer DA, Stone BC (1962) Identification of iso-amyl acetate as an active component in the sting pheromone of the honey bee. Nature 195(4845):1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Bolckmans K (2009) Integrated pest management of the exotic invasive pest Tuta absoluta. In: International Biocontrol Manufacturers Association and Research Institute of Organic Agriculture (eds.) Proceedings of the 4th annual biocontrol industry meeting internationals, Lucerne, Switzerland

    Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol 46(1):189–214

    Article  CAS  Google Scholar 

  • Bornemissza GF (1964) Sex attractant of male scorpion flies. Nature 203(4946):786–787

    Article  Google Scholar 

  • Böttinger LC, Hofferberth J, Ruther J, Stökl J (2019) Semiochemicals mediating defense, intraspecific competition, and mate finding in Leptopilina ryukyuensis and L. japonica (Hymenoptera: Figitidae), parasitoids of Drosophila. J Chem Ecol 45(3):241–252

    Article  PubMed  CAS  Google Scholar 

  • Brent CS, Byers JA, Levi-Zada A (2017) An insect anti-antiaphrodisiac. Elife 6:e24063

    Article  PubMed  PubMed Central  Google Scholar 

  • Butenandt A, Tam N (1957) Ãœber einen geschlechtsspezifischen duftstoff der wasserwanze Belostoma indica Vitalis (Lethocerus indicus Lep.). Hoppe-Seyler’s Zeitschrift für Physiol Chem 308(1):277–283

    Article  CAS  Google Scholar 

  • Butler CG (1965) Sex attraction in Andrena flavipes panzer (Hymenoptera: Apidae), with some observations on nest-site restriction. Proc R Entomol Soc Lond 40:77

    Google Scholar 

  • Butler CG, Callow RK, Chapman JR (1964) 9-Hydroxydec-trans-2-enoic acid, a pheromone stabilizing honeybee swarms. Nature 201(4920):733–733

    Article  CAS  Google Scholar 

  • Byers JA (2014) Simulation of mating disruption and mass trap** with competitive attraction and camouflage. Environ Entomol 36(6):1328–1338

    Article  Google Scholar 

  • Callow K, Johnstonn C (1960) The chemical constitution and synthesis of queen substance of honeybees (Apis mellifera). Bee World 41:152–153

    Article  CAS  Google Scholar 

  • Carthy JD (1951) The orientation of two allied species of British ant, II. Odour trail laying and following in Acanthomyops fuliginosus (Lasius). Behaviour:304–318

    Google Scholar 

  • Caspary VG, Downe AER (1971) Swarming and mating of Chironomus riparius (Diptera: Chironomidae). Canadian Entomol 103(3):444–448

    Article  Google Scholar 

  • Chadha MS, Eisner T, Monro A, Meinwald J (1962) Defence mechanisms of arthropods VII: citronellal and citral in the mandibular gland secretion of the ant Acanthomyops claviger (Roger). J Insect Physiol 8(2):175–179

    Article  Google Scholar 

  • Cheng YN, Wen P, Dong SH, Tan K, Nieh JC (2017) Poison and alarm: the Asian hornet Vespa velutina uses sting venom volatiles as an alarm pheromone. J Exp Biol 220(4):645–651

    PubMed  Google Scholar 

  • Cork A, Alam SN, Das A, Das CS, Ghosh GC, Farman DI, Hall DR, Maslen NR, Vedham K, Phythian SJ, Rouf FMA (2001) Female sex pheromone of brinjal fruit and shoot borer, Leucinodes orbonalis blend optimization. J Chem Ecol 27(9):1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Darragh K, Orteu A, Byers KJ, Szczerbowski D, Warren IA, Rastas P, Pinharanda AL, Davey JW, Garza SF, Almeida DA, Merrill RM (2019) A novel terpene synthase produces an anti-aphrodisiac pheromone in the butterfly Heliconius melpomene. bioRxiv:779678

    Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol:131–139

    Google Scholar 

  • Du Y, Grodowitz MJ, Chen J (2019) Electrophysiological responses of eighteen species of insects to fire ant alarm pheromone. Insects 10(11):403

    Article  PubMed Central  Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trap** for long-term pest management and eradication of invasive species. J Econ Entomol 99(5):1550–1564

    Article  CAS  PubMed  Google Scholar 

  • Engelmann (1965) Pheromones and mating behaviour. In: Proc. XII. Int. Congr. Ent., London, pp 289

    Google Scholar 

  • Ferrari MC, Messier F, Chivers DP (2007) Degradation of chemical alarm cues under natural conditions: risk assessment by larval woodfrogs. Chemoecology 17(4):263–266

    Article  Google Scholar 

  • Field LM, Birkett M, Dufour S, He X, Hooper A, Pickett J, Zhou JJ (2007) Prospects for coupling new molecular approaches to chemical analysis. In: Contribution at the 23rd ISCE annual meeting in Jena, Germany

    Google Scholar 

  • Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42(1):123–146

    Article  CAS  PubMed  Google Scholar 

  • Freitag J, Ludwig G, Andreini I, Rössler P, Breer H (1998) Olfactory receptors in aquatic and terrestrial vertebrates. J Comp Physiol A 183(5):635–650

    Article  CAS  PubMed  Google Scholar 

  • Gary NE (1962) Chemical mating attractants in the queen honey bee. Science 136(3518):773–774

    Article  CAS  PubMed  Google Scholar 

  • Gary NE (1963) Observations of mating behaviour in the honeybee. J Apic Res 2(1):3–13

    Article  Google Scholar 

  • Giblin-Davis RM, Oehlschlager AC, Perez A, Gries G, Gries R, Weissling TJ, Chinchilla CM, Peña JE, Hallett RH, Pierce HD Jr, Gonzalez LM (1996) Chemical and behavioral ecology of palm weevils (Curculionidae: Rhynchophorinae). Florida Entomol 79:153–167

    Article  CAS  Google Scholar 

  • Hanks LM, Millar JG (2016) Sex and aggregation-sex pheromones of cerambycid beetles: basic science and practical applications. J Chem Ecol 42(7):631–654

    Article  CAS  PubMed  Google Scholar 

  • Hodek J (1960) Hibernation-bionomics in Coccinellidae. Gas Esl Spol Ent 57:1–20

    Google Scholar 

  • Jacobson M, Beroza M, Jones WA (1960) Isolation, identification, and synthesis of the sex attractant of gypsy moth. Science 132(3433):1011–1012

    Article  CAS  PubMed  Google Scholar 

  • Jardine KJ, Luani RDO, Rodrigues TB, Spanner GC, Rodrigues JR, Menezes VS, Sampaio I, Oliveira DC, Gimenez BO, Higuchi N, Chambers JQ (2020) Volatiles defenses of Amazon Azteca ants (repellent ants). bioRxiv

    Google Scholar 

  • Jimenez SI, Gries R, Zhai H, Derstine N, McCann S, Gries G (2016) Evidence for a nest defense pheromone in bald-faced hornets, Dolichovespula maculata, and identification of components. J Chem Ecol 42(5):414–424

    Article  CAS  PubMed  Google Scholar 

  • Karlson P, Lüscher M (1959) ‘Pheromones’: a new term for a class of biologically active substances. Nature 183(4653):55–56

    Article  CAS  PubMed  Google Scholar 

  • Keller JC, Mitchell EB, Mckibbenn G, Davich TB (1964) A sex attractant for female boll weevils from males. J Econ Entomol 57:609–610

    Article  Google Scholar 

  • Kheloul L, Kellouche A, Bréard D, Gay M, Gadenne C, Anton S (2019) Trade-off between attraction to aggregation pheromones and repellent effects of spike lavender essential oil and its main constituent linalool in the flour beetle Tribolium confusum. Entomol Exp Appl 167(9):826–834

    Article  CAS  Google Scholar 

  • Klaschka U (2008) Odorants–potent substances at minor concentrations: the ecological role of infochemicals. In: Pharmaceuticals in the environment. Springer, Berlin, pp 305–320

    Chapter  Google Scholar 

  • Klaschka U, Kolossa-Gehring M (2007) Fragrances in the environment: pleasant odours for nature. Environ Sci Pollut Res 14(1):44–52

    Article  CAS  Google Scholar 

  • Kumar J (2016) Infochemicals: an effective and environment friendly management of insect pests for sustainable agriculture. Int J Agric Invent 1:218–224

    Google Scholar 

  • Kumar R, Kumar R, Prakash O, Srivastava RM, Pant AK (2019a) Chemical composition, in vitro antioxidant, anti-inflammatory and antifeedant properties in the essential oil of Asian marsh weed Limnophila indica L.(Druce). J Pharm Phytochem 8(1):1689–1694

    CAS  Google Scholar 

  • Kumar R, Kumar R, Prakash O, Srivastava RM, Pant AK (2019b) GC MS analysis of the hexane extract of Limnophila indica (L.) Druce, its total phenolics, in-vitro antioxidant, anti-inflammatory and antifeeding activity against Spilosoma obliqua. J Entomol Zool Stud 7(1):970–975

    Google Scholar 

  • Lancaster J, Khrimian A, Young S, Lehner B, Luck K, Wallingford A, Ghosh SKB, Zerbe P, Muchlinski A, Marek PE, Sparks ME (2018) De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proc Natl Acad Sci 115(37):E8634–E8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin

    Book  Google Scholar 

  • Laturney M, Billeter JC (2016) Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones. Nat Commun 7(1):1–11

    Article  CAS  Google Scholar 

  • Law JH, Regnier FE (1971) Pheromones. Annu Rev Biochem 40(1):533–548

    Article  CAS  PubMed  Google Scholar 

  • Law JH, Wilson EO, McCloskey JA (1965) Biochemical polymorphism in ants. Science 149(3683):544–545

    Article  CAS  PubMed  Google Scholar 

  • Lee HR, Lee SC, Lee DH, Choi WS, Jung CS, Jeon JH, Kim JE, Park IK (2017) Identification of the aggregation-sex pheromone produced by male Monochamus saltuarius, a major insect vector of the pine wood nematode. J Chem Ecol 43(7):670–678

    Article  CAS  PubMed  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  CAS  PubMed  Google Scholar 

  • Liu F, **ong C, Liu N (2017) Chemoreception to aggregation pheromones in the common bed bug, Cimex lectularius. Insect Biochem Mol Biol 82:62–73

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Chang MM, Lei CL, Yang FL (2016) A garlic substance disrupts odorant-binding protein recognition of insect pheromones released from adults of the angoumois grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae). Insect Mol Biol 25(5):530–540

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EG, Thorpe WH (1948) Odour as a basis for orientated movement in ants. Behaviour:267–296

    Google Scholar 

  • Markheiser A, Rid M, Biancu S, Gross J, Hoffmann C (2020) Tracking short-range attraction and oviposition of European grapevine moths affected by volatile organic compounds in a four-chamber Olfactometer. Insects 11(1):45

    Article  PubMed Central  Google Scholar 

  • Maschwitz UW (1964a) Alarm substances and alarm behaviour in social Hymenoptera. Nature 204(4956):324–327

    Article  Google Scholar 

  • Maschwitz U (1964b) Gefahrenalarmstoffe und Gefahrenalarmierung bei sozialen Hymenopteren. Z Vgl Physiol 47(6):596–655

    Article  Google Scholar 

  • Mazza G, Inghilesi AF, Longo S, Cervo R (2016) Male chemical cues mediate the female preference for egg deposition site in Rhynchophorus ferrugineus. Bull Insectol 69(1):41–48

    Google Scholar 

  • Moore BP (1964) Volatile terpenes from Nasutitermes soldiers (Isoptera, Termitidae). J Insect Physiol 10(2):371–375

    Article  CAS  Google Scholar 

  • Morimoto R (1960) On the social co-operation in Polistes chinensis antennalis Perez. IX studies on the social hymenoptera of Japan. Kontyd 28:198–208

    Google Scholar 

  • Morrison WR, Grosdidier RF, Arthur FH, Myers SW, Domingue MJ (2020) Attraction, arrestment, and preference by immature Trogoderma variabile and Trogoderma granarium to food and pheromonal stimuli. J Pest Sci 93(1):135–147

    Article  Google Scholar 

  • Moser JC, Blum MS (1963) Trail marking substance of the Texas leaf-cutting ant: source and potency. Science 140(3572):1228–1228

    Article  Google Scholar 

  • Nixon HL, Ribbands CR (1952) Food transmission within the honeybee community. Proc R Soc Lond Ser B Biol Sci 140(898):43–50

    CAS  Google Scholar 

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220

    Article  Google Scholar 

  • Norris MJ, Richards MO (1963) Laboratory experiments on gregarious behaviour in ovipositing females of the desert locust, (Schistocerca gregaria (forsk.)). Entomol Exp Appl 6(4):279–303

    Article  Google Scholar 

  • Oehlschlager AC, Chinchilla C, Castillo G, Gonzalez L (2002) Control of red ring disease by mass trap** of Rhynchophorus palmarum (Coleoptera: Curculionidae). Fla Entomol 85(3):507–513

    Article  Google Scholar 

  • Pereyra PC, Sánchez NE (2006) Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Neotrop Entomol 35(5):671–676

    Article  PubMed  Google Scholar 

  • Polya G (2003) Biochemical targets of plant bioactive compounds: a pharmacological reference guide to sites of action and biological effects. CRC press

    Google Scholar 

  • Raji JI, Melo N, Castillo JS, Gonzalez S, Saldana V, Stensmyr MC, DeGennaro M (2019) Aedes aegypti mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Curr Biol 29(8):1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen LEL, Lazar J, Greenwood DR (2003) Olfactory adventures of elephantine pheromones, vol 31, p 137

    Google Scholar 

  • Regnier FE, Law JH (1968) Insect pheromones. J Lipid Res 9(5):541–551

    Article  CAS  PubMed  Google Scholar 

  • Richards OW (1927) Sexual selection and allied problems in the insects. Biol Rev 2(4):298–364

    Article  Google Scholar 

  • Schulz S, Estrada C, Yildizhan S, Boppré M, Gilbert LE (2008) An antiaphrodisiac in Heliconius melpomene butterflies. J Chem Ecol 34(1):82–93

    Article  CAS  PubMed  Google Scholar 

  • Spieth HT (1940) Studies on the biology of the Ephemer-Optera. II. The nuptial flight. J NY Entomol Soc 48(4):379–390

    Google Scholar 

  • Stuart AM (1963) Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol Zool 36(1):85–96

    Article  Google Scholar 

  • Suckling DM (2000) Issues affecting the use of pheromones and other semiochemicals in orchards. Crop Prot 19(8–10):677–683

    Article  CAS  Google Scholar 

  • Torto B (2009) Chemical signals as attractants, repellents and aggregation stimulants. Chem Ecol 1:186

    Google Scholar 

  • Wall C, Garthwaite DG, Smyth JB, Sherwood A (1987) The efficacy of sex-attractant monitoring for the pea moth, Cydia nigricana, in England, 1980–1985. Ann Appl Biol 110(2):223–229

    Article  Google Scholar 

  • Wharton DRA, Black ED, Merritt C Jr, Jacobson M, Beroza M (1963) Sex attractant of the American cockroach. Science:1257–1261

    Google Scholar 

  • Wilson EO (1959) Source and possible nature of the odor trail of fire ants. Science 129(3349):643–644

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1963) Pheromones. Sci Am 208(5):100–115

    Article  Google Scholar 

  • Wilson EO (1965) Chemical communication in the social insects. Science 149(3688):1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO, Pavan M (1959) Glandular sources and specificity of some chemical releasers of social behavior in dolichoderine ants. Psyche 66(4):70–76

    Article  Google Scholar 

  • Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Witzgall P, Unelius RC, Rama F, Chambon JP, Bengtsson M (1997) Mating disruption of pea moth, Cydia nigricana, and codling moth, Pomonella, using blends of sex pheromone and attraction antagonists. IOBC WPRS Bull 20:207–216

    Google Scholar 

  • Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A 196(10):685–700

    Article  CAS  Google Scholar 

  • Yew JY, Dreisewerd K, Luftmann H, Müthing J, Pohlentz G, Kravitz EA (2009) A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Curr Biol 19(15):1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Trask BJ (2002) The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11(10):1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Firestein S (1999) Vertebrate odorant receptors. Cell Mol Life Sci CMLS 56(7–8):647–659

    Article  CAS  PubMed  Google Scholar 

  • Zhong YZ, Tang R, Zhang JP, Yang SY, Chen GH, He KL, Wang ZY, Zhang F (2018) Behavioral evidence and olfactory reception of a single alarm pheromone component in Halyomorpha halys. Front Physiol 9:1610

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Buck LB (2006) Combinatorial effects of odorant mixes in olfactory cortex. Science 311(5766):1477–1481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author is very grateful to ICAR-IARI for providing the funding source IARI Merit Scholarship and the faculty of Division of Agricultural Chemical ICAR-IARI, Pusa, New Delhi for their encouragement and help in the manuscript writing.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Chandini, Kumar, R., Prakash, O., Kumar, R., Pant, A.K. (2021). Chemical Signal Dissemination Through Infochemicals. In: Nath, M., Bhatt, D., Bhargava, P., Choudhary, D.K. (eds) Microbial Metatranscriptomics Belowground. Springer, Singapore. https://doi.org/10.1007/978-981-15-9758-9_4

Download citation

Publish with us

Policies and ethics

Navigation