Intelligent Detection and Recognition of Seabed Targets in Side-Scan Sonar Images

  • Chapter
  • First Online:
High-resolution Seafloor Survey and Applications

Abstract

Side-scan sonar is widely used in marine surveying, underwater search and rescue, mine detection, pipeline survey and other fields. At present, artificial methods are used to recognize and study seabed targets. They are inefficient and unreliable, and rely heavily on the level of knowledge of researchers. Based on actual need, the research status of seabed target detection and recognition is systematically discussed in this chapter, a feasible seabed target detection and recognition method based on artificial intelligence is proposed, and an experimental application is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta G, Villar S (2015) Accumulated CA-CFAR process in 2-D for online object detection from side-scan sonar data. IEEE J Oceanic Eng 40(3):558–569. https://doi.org/10.1109/JOE.2014.2356951

  • Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269–277. https://doi.org/10.1006/jcph.1995.1098

  • Appleton B, Talbot H (2005) Globally optimal geodesic active contours. J Math Imaging Vis 23(1):67–86. https://doi.org/10.1007/s10851-005-4968-1

  • Ayed IB, Hennane N, Mitiche A (2006) Unsupervised variational image segmentation/classification using a Weibull observation model. IEEE Trans Image Process 15(11):3431–3439. https://doi.org/10.1109/TIP.2006.881961

  • Ayed IB, Mitiche A, Belhadj Z (2005) Multiregion level set partitioning of synthetic aperture radar images. IEEE Trans Pattern Anal Mach Intell 27(5):793–800. https://doi.org/10.1109/TPAMI.2005.106

  • Balla-Arabé S, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920. https://doi.org/10.1109/TSMCB.2012.2218233

  • Bresson X, Esedoglu S, Vandergheynst P et al (2007) Fast global minimizes of the active contour/snake model. J Math Imaging Vis 28:151–167. https://doi.org/10.1007/s10851-007-0002-0

  • Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Siam J Multiscale Model Simul 4(2):490–530. https://doi.org/10.1137/040616024

  • Burger HC, Schuler CJ, Harmeling S (2012) Image denoising: can plain neural networks compete with BM3D. Paper presented at the IEEE conference on computer vision and pattern recognition, Providence, RI, USA

    Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

  • Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22(1):61–79. https://doi.org/10.1109/ICCV.1995.466871

  • Celik T, Tjahjadi T (2011) A novel method for side-scan sonar image segmentation. IEEE J Oceanic Eng 36(2):186–193. https://doi.org/10.1109/JOE.2011.2107250

  • Cham TJ, Cipolla R (1997) Stereo coupled active contours. Paper presented at the IEEE conference on computer vision and pattern recognition, San Juan, Puerto Rico, USA, 17–19 June 1997

    Google Scholar 

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277. https://doi.org/10.1109/83.902290

  • Chatterjee P, Milanfar P (2010) Is denoising dead? IEEE Trans Image Process 19(4):895–911. https://doi.org/10.1109/TIP.2009.2037087

  • Chen Y, Tagare HD, Thiruvenkadam S et al (2002) Using prior shapes in geometric active contours in a variational framework. Int J Comput Vision 50(3):315–328. https://doi.org/10.1023/a:1020878408985

  • Chung G, Vese LA (2009) Image segmentation using a multilayer level-set approach. Comput Vis Sci 12(6):267–285. https://doi.org/10.1007/s00791-008-0113-1

  • Cobra DT, Oppenheim AV, Jaffe JS (1992) Geometric distortions in side-scan sonar images: a procedure for their estimation and correction. IEEE J Oceanic Eng 17(3):252–268. https://doi.org/10.1109/48.153442

  • Coupé P, Hellier P, Kervrann C et al (2009) Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans Image Process 18(10):2221–2229. https://doi.org/10.1109/TIP.2009.2024064

  • Coupé P, Yger P, Prima S et al (2008) An optimized blockwise non local means denoising filter for 3D magnetic resonance images. IEEE Trans Med Imaging 27:425–441. https://doi.org/10.1109/TMI.2007.906087

  • Cozzolino D, Parrilli S, Scarpa G et al (2014) Fast adaptive nonlocal SAR despeckling. IEEE Trans Geosci Remote Sens Lett 11(2):524–528. https://doi.org/10.1109/igrs.2013.2271650

  • Dabov K, Foi A, Katkovnik V et al (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

  • Daniel S, Guillaudeux S, Maillard E (1997) Adaptation of a partial shape recognition approach. Available via DIALOG. https://www.sci-hub.shop/. Accessed 2 July 2019

  • Donoho DL (1995) Denoising by soft-thresholding. IEEE Trans Inf Theory 41(3):613–627. https://doi.org/10.1109/18.382009

  • Dura E, Bell J, Lane D (2008) Superellipse fitting for the recovery and classification of mine-like shapes in Side-scan sonar images. IEEE J Oceanic Eng 33(4):434–444. https://doi.org/10.1109/JOE.2008.2002962

  • Gao XB, Wang B, Tao DC et al (2011) A relay level set method for automatic image segmentation. IEEE Trans Cybern 41(2):518–525. https://doi.org/10.1109/TSMCB.2010.2065800

  • Gastaud M, Barlaud M, Aubert G (2004) Combining shape prior and statistical features for active contour segmentation. IEEE Trans Circuits Syst Video Technol 14(5):726–734. https://doi.org/10.1109/TCSVT.2004.826758

  • Goldenberg R, Kimmel R, Rivlin E et al (2001) Fast geodesic active contours. IEEE Trans Image Process 10(10):1467–1475. https://doi.org/10.1109/83.951533

  • Guillaudeux S, DanieL S, Maillard EP (1996) Optimization of a sonar image processing chain: a fuzzy rules based expert system approach. In: OCEANS 96 MTS/IEEE Conference Proceeding, Fort Lauderdale, FL, USA, 23–26

    Google Scholar 

  • Hodneland E, Tai XC, Gerdes H (2009) Four-color theorem and level set methods for watershed segmentation. Int J Comput Vision 82(3):264–283. https://doi.org/10.1007/s11263-008-0199-4

  • Huo GY, Yang SM, Li QW et al (2017) A robust and fast method for side-scan sonar image segmentation using nonlocal despeckling and active contour model. IEEE Trans Cybern 47(4):855–872. https://doi.org/10.1109/TCYB.2016.2530786

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331. https://doi.org/10.1007/BF00133570

  • Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337. https://doi.org/10.1109/TIP.2010.2040763

  • Li CM, Huang R, Ding ZH et al (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016. https://doi.org/10.1109/TIP.2011.2146190

  • Li CM, Kao C, Gore JC et al (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949. https://doi.org/10.1109/TIP.2008.2002304

  • Li CM, Xu CY, Gui CF et al (2005) Level set evolution without re-initialization: a new variational formulation. In: Paper presented at the IEEE conference on computer vision and pattern recognition

    Google Scholar 

  • Li CM, Xu CY, Gui CF et al (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. https://doi.org/10.1109/TIP.2010.2069690

  • Lianantonakis M, Petillot Y (2007) side-scan sonar segmentation using texture descriptors and active contours. IEEE J Oceanic Eng 32(3):744–752. https://doi.org/10.1109/joe.2007.893683

  • Lucca EV, Freitas CC, Frery AC et al (1998) Comparison of SAR segmentation algorithms. In: Paper presented at the Anais IX Simpósio Brasileiro de Sensoriamento Remoto, Santos, Brasil

    Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: A level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175. https://doi.org/10.1109/34.368173

  • Mallat S (2008) A Wavelet Tour of Signal Processing, 3rd edn. Academic Press, Salt Lake City, The Sparse Way

    Google Scholar 

  • Mansouri AR, Mitiche A, Vazquez C (2006) Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput Vis Image Underst 101:137–150. https://doi.org/10.1016/j.cviu.2005.07.008

  • Marques RCP, Medeiros FN, Nobre JS (2012) SAR image segmentation based on level set approach and model. IEEE Trans Pattern Anal Mach Intell 34(10):2046–2057. https://doi.org/10.1109/tpami.2011.274

  • Mignotte M, Collet C, Prez P et al (1999) Three-class Markovian segmentation of high-resolution sonar images. Comput Vis Image Underst 76(3):191–204. https://doi.org/10.1006/cuiu.1999.0804

  • Mignotte M, Collet C, Prez P et al (2000) Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Trans Image Process 9(7):1216–1231. https://doi.org/10.1109/83.847834

  • Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685. https://doi.org/10.1002/cpa.3160420503

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49. https://doi.org/10.1016/0021-9991(88)90002-2

  • Papandreou G, Maragos P (2004) A fast multigrid implicit algorithm for the evolution of geodesic active contours. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2

    Google Scholar 

  • Papandreou G, Maragos P (2007) Multigrid geometric active contour models. IEEE Trans Image Process 16(1):229–240. https://doi.org/10.1109/TIP.2006.2006.884952

  • Parrilli S, Poderico M, Angelino CV et al (2012) A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. IEEE Trans Geosci Remote Sens 50(2):606–616. https://doi.org/10.1109/tgrs.2011.2161586

  • Reed S, Petillot Y, Bell J (2003) An automatic approach to the detection and extraction of mine features in side-scan sonar. IEEE J Oceanic Eng 28(1):90–104. https://doi.org/10.1109/joe.2002.808199

  • Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595. https://doi.org/10.1073/pnas.93.4.1591

  • Sethian JA (1999) Level set methods and fast marching methods. Cambridge University Press, London

    Google Scholar 

  • Tsai A, Yezzi A, Willsky AS (2001) Curve evolution implementation of the Mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10(8):1169–1186. https://doi.org/10.1109/83.935033

  • Tsechpenakis G, Metaxas DN (2009) CoCRF deformable model: a geometric model driven by collaborative conditional random fields. IEEE Trans Image Process 18(10):2316–2329. https://doi.org/10.1109/tip.2009.2026624

  • Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293. https://doi.org/10.1023/A:1020874308076

  • Wang B, Gao X, Tao D et al (2014) A nonlinear adaptive level set for image segmentation. IEEE Trans Cybern 44(3):418–428. https://doi.org/10.1109/TCYB.2013.2256891

  • Weickert J, Kuhne G (2003) Fast methods for implicit active contour models. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York, pp 43–57

    Google Scholar 

  • Xu CY, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369. https://doi.org/10.1109/83.661186

  • Xu C, Yezzi A, Prince J (2000) On the relationship between parametric and geometric active contours. Paper presented at the 34th asilomar conference on signals, systems and computers, Pacific Grove, CA, USA. https://doi.org/10.1109/ACSSC.2000.911003

  • Yang X, Gao XB, Tao DC et al (2014) Improving level set method for fast auroral oval segmentation. IEEE Trans Image Process 23(7):2854–2865. https://doi.org/10.1109/TIP.2014.2321506

  • Yang X, Gao XB, Tao DC et al (2015) An efficient MRF embedded level set method for image segmentation. IEEE Trans Image Process 24(1):9–21. https://doi.org/10.1109/TIP.2014.2372615

  • Ye XF, Zhang ZH, Liu PX et al (2010) Sonar image segmentation based on GMRF and level-set models. Ocean Eng 37(10):891–901. https://doi.org/10.1016/j.oceaneng.2010.03.003

  • Yezzi A, Kichenassamy S, Kumar A (1997) A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16(2):199–209. https://doi.org/10.1109/42.653665

  • Zhang KH, Zhang L, Lam KM et al (2016) A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans Cybern 46(2):546–547. https://doi.org/10.1109/TCYB.2015.2409119

  • Zhao HK, Chan T, Merriman B et al (1996) A variational level set approach to multiphase motion. J Comput Phys 127:179–195. https://doi.org/10.1006/jcph.1996.0167

  • Zhu SC, Yuille A (1996) Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900. https://doi.org/10.1109/34.537343

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Z., Yang, F., Tang, Y. (2021). Intelligent Detection and Recognition of Seabed Targets in Side-Scan Sonar Images. In: High-resolution Seafloor Survey and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-9750-3_9

Download citation

Publish with us

Policies and ethics

Navigation