Cooperative Active-Sites Mechanism

  • Chapter
  • First Online:
Metal Clusters and Their Reactivity
  • 374 Accesses

Abstract

Akin to the shell structures of atoms, shell-filling concepts from traditional valence bond theory can be applied to the description of cluster stability. In view of this, the result of a chemical interaction could be explained through the energy minimization attained when a cluster closes an incomplete electronic shell, either by direct ionization or through the formation of a covalent/ionic bond. Also, it has been widely recognized that cluster stability and reactivity are associated with a comprehensive picture involving geometric structure, electronic configuration and the resulted energetics, allowing for one atom to make a difference and active-sites cooperation as introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Pierik, W. Roseboom, R.P. Happe, K.A. Bagley, S.P.J. Albracht, J. Biol. Chem. 274, 3331–3337 (1999)

    Article  CAS  Google Scholar 

  2. L. Que, J. Chem. Soc., Dalton Trans. 3933–3940 (1997)

    Google Scholar 

  3. E.I. Solomon, D.E. Heppner, E.M. Johnston, J.W. Ginsbach, J. Cirera, M. Qayyum, M.T. Kieber-Emmons, C.H. Kjaergaard, R.G. Hadt, L. Tian, Chem. Rev. 114, 3659–3853 (2014)

    Article  CAS  Google Scholar 

  4. M.B. Abreu, C. Powell, A.C. Reber, S.N. Khanna, J. Am. Chem. Soc. 134, 20507–20512 (2012)

    Article  CAS  Google Scholar 

  5. A.C. Reber, S.N. Khanna, P.J. Roach, W.H. Woodward, A.W. Castleman Jr., J. Phys. Chem. A 114, 6071–6081 (2010)

    Article  CAS  Google Scholar 

  6. A.C. Reber, P.J. Roach, W.H. Woodward, S.N. Khanna, A.W. Castleman Jr., J. Phys. Chem. A 116, 8085–8091 (2012)

    Article  CAS  Google Scholar 

  7. P.J. Roach, W.H. Woodward, A.W. Castleman Jr., A.C. Reber, S.N. Khanna, Science 323, 492–495 (2009)

    Article  CAS  Google Scholar 

  8. W.H. Woodward, A.C. Reber, J.C. Smith, S.N. Khanna, A.W. Castleman Jr., J. Phys. Chem. C 117, 7445–7450 (2013)

    Article  CAS  Google Scholar 

  9. Z. Luo, A.W. Castleman Jr., S.N. Khanna, Chem. Rev. 116, 14456–14492 (2016)

    Article  CAS  Google Scholar 

  10. Z. Luo, J.C. Smith, W.H. Woodward, A.W. Castleman Jr., J. Phys. Chem. Lett. 3, 3818–3821 (2012)

    Article  CAS  Google Scholar 

  11. M.J. Danton, M.S. Coleman, Pediatr. Res. 19, 751–751 (1985)

    Article  Google Scholar 

  12. L. Dzantiev, L.J. Romano, Biochemistry 39, 356–361 (2000)

    Article  CAS  Google Scholar 

  13. D. Herschlag, T.R. Cech, Biochemistry 29, 10159–10171 (1990)

    Article  CAS  Google Scholar 

  14. D.C. Johnston, B.G. Silbernagel, M. Daage, R.R. Chianelli, Abstr. Pap. Am. Chem. Soc. 189, 76-PETR (1985)

    Google Scholar 

  15. S. K. Khanna, Abstr. Pap. Am. Chem. Soc. 247 (2014)

    Google Scholar 

  16. D.H. Park, B.V. Plapp, J. Biol. Chem. 266, 13296–13302 (1991)

    CAS  Google Scholar 

  17. T.M. Penning, W.R. Abrams, J.E. Pawlowski, J. Biol. Chem. 266, 8826–8834 (1991)

    CAS  Google Scholar 

  18. T.M. Penning, W.R. Abrams, J.E. Pawlowski, FASEB J. 5, A442–A442 (1991)

    Google Scholar 

  19. K.M. Peterson, D.K. Srivastava, Biochemistry 39, 12678–12687 (2000)

    Article  CAS  Google Scholar 

  20. D. Rennex, B.A. Hemmings, J. Hofsteenge, S.R. Stone, Biochemistry 30, 2195–2203 (1991)

    Article  CAS  Google Scholar 

  21. E. Schleicher, K. Hitomi, C.W.M. Kay, E.D. Getzoff, T. Todo, S. Weber, J. Biol. Chem. 282, 4738–4747 (2007)

    Article  CAS  Google Scholar 

  22. S.A. Strobel, L. Ortoleva-Donnelly, S.P. Ryder, J.H. Cate, E. Moncoeur, Nature Structural Biology 5, 60–66 (1998)

    Article  CAS  Google Scholar 

  23. J.-Y. Zhao, F.-Q. Zhao, S.-Y. Xu, X.-H. Ju, J. Phys. Chem. A 117, 2213–2222 (2013)

    Article  CAS  Google Scholar 

  24. Y. Liu, Y. Hua, M. Jiang, M. Xu, F. Yu, J. Chen, Eur. Phys. J. D 67, 194 (2013)

    Article  CAS  Google Scholar 

  25. S. Das, S. Pal, S. Krishnamurty, J. Phys. Chem. A 117, 8691–8702 (2013)

    Article  CAS  Google Scholar 

  26. M. Arakawa, K. Kohara, T. Ito, A. Terasaki, Eur. Phys. J. D 67, 80 (2013)

    Article  CAS  Google Scholar 

  27. Y. Liu, Y. Hua, M. Jiang, G. Jiang, J. Chen, J. Chem. Phys. 136, 084703 (2012)

    Article  CAS  Google Scholar 

  28. P.N. Day, K.A. Nguyen, R. Pachter, J. Chem. Theory Comput. 8, 152–161 (2012)

    Article  CAS  Google Scholar 

  29. S. Ohmura, F. Shimojo, R.K. Kalia, M. Kunaseth, A. Nakano, P. Vashishta, J. Chem. Phys. 134, 244702 (2011)

    Article  CAS  Google Scholar 

  30. W. Mou, S. Ohmura, A. Hemeryck, F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Aip Adv. 1, 042149 (2011)

    Article  CAS  Google Scholar 

  31. S.A. Krasnokutski, F. Huisken, J. Phys. Chem. A 115, 7120–7126 (2011)

    Article  CAS  Google Scholar 

  32. M. Garcia-Rates, P. Miro, J. Maria Poblet, C. Bo, J. Bonet Avalos, J. Phys. Chem. B, 115, 5980–5992 (2011)

    Google Scholar 

  33. F. Shimojo, S. Ohmura, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett. 104, 126102 (2010)

    Article  CAS  Google Scholar 

  34. L. Zhu, L. Li, S. D. Hao, X.Y. Lin, H.C. Liang, C.J. Yang, Theoretical investigation of molecular water adsorption on Al(111) surface (2005)

    Google Scholar 

  35. A.G. Stack, J.R. Rustad, W.H. Casey, Geochim. Cosmochim. Acta 69, A48–A48 (2005)

    Google Scholar 

  36. B.M. Reinhard, G. Niedner-Schatteburg, J. Phys. Chem. A 106, 7988–7992 (2002)

    Article  CAS  Google Scholar 

  37. V.A. Mikhailov, P.E. Barran, A.J. Stace, Phys. Chem. Chem. Phys. 1, 3461–3465 (1999)

    Article  CAS  Google Scholar 

  38. F. Li, L. Sun, J. Zhao, F. Xu, H.-Y. Zhou, Q.-M. Zhang, F.-L. Huang, Int. J. Hydrogen Energy 38, 6930–6937 (2013)

    Article  CAS  Google Scholar 

  39. C.K. Siu, Z.F. Liu, J.S. Tse, J. Am. Chem. Soc. 124, 10846–10860 (2002)

    Article  CAS  Google Scholar 

  40. S. Álvarez-Barcia, J.R. Flores, Chem. Phys. 374, 131–137 (2010)

    Article  CAS  Google Scholar 

  41. S. Álvarez-Barcia, J.R. Flores, Chem. Phys. 382, 92–97 (2011)

    Article  CAS  Google Scholar 

  42. S. Álvarez-Barcia, J.R. Flores, J. Phys. Chem. A 116, 8040–8050 (2012)

    Article  CAS  Google Scholar 

  43. R. Hofmannsievert, A.W. Castleman Jr., J. Phys. Chem. 88, 3329–3333 (1984)

    Article  CAS  Google Scholar 

  44. W. H. H. Woodward, PhD, The Pennsylvania State University, 2011.

    Google Scholar 

  45. K. Sugawara, F. Sobott, A.B. Vakhtin, J. Chem. Phys. 118, 7808–7816 (2003)

    Article  CAS  Google Scholar 

  46. D.A. Daramola, G.G. Botte, Comput. Theo. Chem. 989, 7–17 (2012)

    Article  CAS  Google Scholar 

  47. G.K. Koyanagi, V. Kapishon, D.K. Bohme, X. Zhang, H. Schwarz, Eur. J. Inorg. Chem. 1516–1521 (2010)

    Google Scholar 

  48. A. Grubisic, X. Li, G. Gantefoer, K.H. Bowen, H. Schnoeckel, F.J. Tenorio, A. Martinez, J. Chem. Phys. 131, 184305 (2009)

    Article  CAS  Google Scholar 

  49. M. Oncak, Y. Cao, M.K. Beyer, R. Zahradnik, H. Schwarz, Chem. Phys. Lett. 450, 268–273 (2008)

    Article  CAS  Google Scholar 

  50. E.S. Kryachko, F. Remacle, J. Chem. Phys. 127, 194305 (2007)

    Article  CAS  Google Scholar 

  51. A. Martinez, J. Braz. Chem. Soc. 16, 337–344 (2005)

    Article  CAS  Google Scholar 

  52. K. Koszinowski, D. Schroder, H. Schwarz, Organometallics 23, 1132–1139 (2004)

    Article  CAS  Google Scholar 

  53. K. Koszinowski, M. Schlangen, D. Schroder, H. Schwarz, Int. J. Mass Spectrom. 237, 19–23 (2004)

    Article  CAS  Google Scholar 

  54. A. Antusek, M. Urban, A.J. Sadlej, J. Chem. Phys. 119, 7247–7262 (2003)

    Article  CAS  Google Scholar 

  55. M.F. Zhou, M.H. Chen, L.N. Zhang, H. Lu, J. Phys. Chem. A 106, 9017–9023 (2002)

    Article  CAS  Google Scholar 

  56. C. Lacaze-Dufaure, T. Mineva, N. Russo, J. Comput. Chem. 22, 1557–1564 (2001)

    Article  CAS  Google Scholar 

  57. K.A. Jackson, M. Knickelbein, G. Koretsky, S. Srinivas, Chem. Phys. 262, 41–51 (2000)

    Article  CAS  Google Scholar 

  58. S.E. Kooi, A.W. Castleman, Chem. Phys. Lett. 315, 49–54 (1999)

    Article  CAS  Google Scholar 

  59. M. Garcia-Hernandez, N. Lopez, I.D. Moreira, J.C. Paniagua, F. Illas, Surf. Sci. 430, 18–28 (1999)

    Article  CAS  Google Scholar 

  60. W.T. Chan, R. Fournier, Chem. Phys. Lett. 315, 257–265 (1999)

    Article  CAS  Google Scholar 

  61. L. Lian, S.A. Mitchell, P.A. Hackett, D.M. Rayner, J. Chem. Phys. 104, 5338–5344 (1996)

    Article  CAS  Google Scholar 

  62. A. Fahmi, R.A. vanSanten, Z. Phys. Chem. 197, 203–217 (1996)

    Google Scholar 

  63. U.N. Andersen, G. Bojesen, Int. J. Mass Spectrom. Ion Processes 153, 1–7 (1996)

    Article  CAS  Google Scholar 

  64. B. J. Winter, T. D. Klots, E. K. Parks and S. J. Riley, Z. Phys. D: At., Mol. Clusters, 1991, 19, 381–384.

    Google Scholar 

  65. K. Fuke, S. Nonose, N. Kikuchi, K. Kaya, Chem. Phys. Lett. 147, 479–483 (1988)

    Article  CAS  Google Scholar 

  66. L. Geng, C. Cui, Y. Jia, H. Wu, H. Zhang, B. Yin, Z.D. Sun, Z. Luo, J. Phys. Chem. A 124, 5879–5886 (2020)

    Article  CAS  Google Scholar 

  67. A.N. Pestryakov, V.V. Lunin, N. Bogdanchikova, O.N. Temkin, E. Smolentseva, Fuel 110, 48–53 (2013)

    Article  CAS  Google Scholar 

  68. M. Ichihashi, C.A. Corbett, T. Hanmura, J.M. Lisy, T. Kondow, J. Phys. Chem. A 109, 7872–7880 (2005)

    Article  CAS  Google Scholar 

  69. S. Keki, L. Nagy, G. Deak, M. Zsuga, L. Somogyi, A. Levai, J. Am. Soc. Mass Spectrom. 15, 879–883 (2004)

    Article  CAS  Google Scholar 

  70. Y.L. Cao, X.A. Zhao, B. **n, S.X. **ong, Z.C. Tang, J. Mol. Struct. Theochem 683, 141–146 (2004)

    Article  CAS  Google Scholar 

  71. S.H. Cai, K. Sohlberg, J. Mol. Catal. a-Chem. 193, 157–164 (2003)

    Article  CAS  Google Scholar 

  72. G.M. Koretsky, M.B. Knickelbein, R. Rousseau, D. Marx, J. Phys. Chem. A 105, 11197–11203 (2001)

    Article  CAS  Google Scholar 

  73. R. Rousseau, D. Marx, J. Chem. Phys. 112, 761–769 (2000)

    Article  CAS  Google Scholar 

  74. A.M.L. Oiestad, E. Uggerud, Chem. Phys. 262, 169–177 (2000)

    Article  CAS  Google Scholar 

  75. G. Dietrich, S. Kruckeberg, K. Lutzenkirchen, L. Schweikhard, C. Walther, J. Chem. Phys. 112, 752–760 (2000)

    Article  CAS  Google Scholar 

  76. R. Rousseau, G. Dietrich, S. Kruckeberg, K. Lutzenkirchen, D. Marx, L. Schweikhard, C. Walther, Chem. Phys. Lett. 295, 41–46 (1998)

    Article  CAS  Google Scholar 

  77. M.B. Knickelbein, G.M. Koretsky, J. Phys. Chem. A 102, 580–586 (1998)

    Article  CAS  Google Scholar 

  78. R.T. Yadav, M. Ichihashi, T. Kondow, J. Phys. Chem. A 108, 7188–7192 (2004)

    Article  CAS  Google Scholar 

  79. Z.X. Tian, X.P. **ng, Z.C. Tang, Rapid Commun. Mass Spectrom. 17, 17–23 (2003)

    Article  CAS  Google Scholar 

  80. E.E. Fileti, P. Chaudhuri, S. Canuto, Chem. Phys. Lett. 400, 494–499 (2004)

    Article  CAS  Google Scholar 

  81. M.W. Chase, NIST-JANAF Thermochemical Tables, Fourth edition (American Institute Of Phys, 1998)

    Google Scholar 

  82. S. Mori, M. Suginoya, Y. Tamai, Asle Transactions 25, 261–266 (1982)

    Article  CAS  Google Scholar 

  83. S.A. Claridge, A.W. Castleman, S.N. Khanna, C.B. Murray, A. Sen, P.S. Weiss, ACS Nano 3, 244–255 (2009)

    Article  CAS  Google Scholar 

  84. A. Guevara-Garcia, A. Martinez, J.V. Ortiz, J. Chem. Phys. 122, 214309 (2005)

    Article  CAS  Google Scholar 

  85. V. Bonacic-Koutecky, J. Burda, R. Mitric, M.F. Ge, G. Zampella, P. Fantucci, J. Chem. Phys. 117, 3120–3131 (2002)

    Google Scholar 

  86. A. Sanchez, S. Abbet, U. Heiz, W.D. Schneider, H. Hakkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573–9578 (1999)

    Article  CAS  Google Scholar 

  87. J.A. Anderson, M.F. Garcia, Supported Metals in Catalysis (Imperial College Press, 2005)

    Google Scholar 

  88. A.F. Carley, M.W. Roberts, Surface Chemistry and Catalysis (Kluwer Academic/Plenum Publishers, 2002)

    Google Scholar 

  89. R.E. McClean, H.H. Nelson, M.L. Campbell, J. Phys. Chem. 97, 9673–9676 (1993)

    Article  CAS  Google Scholar 

  90. S. Alvarez-Barcia, J.R. Flores, J. Chem. Phys. 131, 174307 (2009)

    Article  CAS  Google Scholar 

  91. C.X. Zhang, C.H. Chen, H.X. Dong, J.R. Shen, H. Dau, J.Q. Zhao, Science 348, 690–693 (2015)

    Article  CAS  Google Scholar 

  92. US Patient, US20190024216A1 (2019)

    Google Scholar 

  93. A.M.S. Pembere, X. Liu, W. Ding, Z. Luo, J. Phys. Chem. A 122, 3107–3114 (2018)

    Article  CAS  Google Scholar 

  94. H. Zhang, C. Cui, Z. Luo, J. Phys. Chem. A 123, 4891–4899 (2019)

    Article  CAS  Google Scholar 

  95. H.Z. Wang, D.Y.C. Leung, M.K.H. Leung, M. Ni, Renew. Sust. Energ. Rev. 13, 845–853 (2009)

    Article  CAS  Google Scholar 

  96. J.M. Woodall, J.T. Ziebarth, C.R. Allen, D.M. Sherman, J. Jeon, G. Choi, in Materials Innovations in an Emerging Hydrogen Economy, ed by G.G. Wicks, J. Simon, vol. 202 (2009), pp. 121–127

    Google Scholar 

  97. K. Cheng, R. Fu, D. Sang, L. **g, Y. Li, Mater. Lett. 129, 84–87 (2014)

    Article  CAS  Google Scholar 

  98. K.N. Li, C.L. Yang, M.S. Wang, X.G. Ma, L.Z. Wang, Int. J. Hydrogen Energy 40, 8911–8916 (2015)

    Article  CAS  Google Scholar 

  99. K.N. Li, C.L. Yang, M.S. Wang, X.G. Ma, L.Z. Wang, Int. J. Hydrogen Energy 41, 17858–17863 (2016)

    Article  CAS  Google Scholar 

  100. J. Chen, Z. Luo, ChemPhysChem 20, 499–505 (2019)

    Article  CAS  Google Scholar 

  101. S. Álvarez-Barcia, J.R. Flores, J. Phys. Chem. C 115, 24849–24857 (2011)

    Article  CAS  Google Scholar 

  102. S. Alvarez-Barcia, J.R. Flores, J. Chem. Phys. 140, 084313 (2014)

    Article  CAS  Google Scholar 

  103. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R.W. Fischer, J.K. Nørskov, R. Schlögl, Science 336, 893–897 (2012)

    Article  CAS  Google Scholar 

  104. G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994)

    Google Scholar 

  105. J. Greeley, J.K. Norskov, M. Mavrikakis, Annu. Rev. Phys. Chem. 53, 319–348 (2002)

    Article  CAS  Google Scholar 

  106. J.P. Greeley, Science 336, 810–811 (2012)

    Article  Google Scholar 

  107. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Science 295, 2053–2055 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Z., Khanna, S.N. (2020). Cooperative Active-Sites Mechanism. In: Metal Clusters and Their Reactivity. Springer, Singapore. https://doi.org/10.1007/978-981-15-9704-6_6

Download citation

Publish with us

Policies and ethics

Navigation