Hel** Leukemia Cells to Die with Natural or Chemical Compounds Through H2O2 Signaling

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Leukemia disorders have showed resistance to conventional treatment. Therefore, the idea of treating them with drugs that either directly or indirectly generates oxidative stress (OS) and hydrogen peroxide (H2O2) as effective therapeutic strategy for selectively pushing those cells over reactive oxygen species (ROS) threshold and induce apoptosis has ultimately gained scientific momentum. Our research group has focused on unrevealing the molecular mechanism of OS/H2O2 -induced apoptosis in leukemia cells by metabolic alterations (e.g., glucose starvation, fructose as only energetic source) and some selected natural or chemical agents including vitamin C, vitamin K3, vitamin E D-α-tocopheryl polyethylene glycol succinate, snake venom metalloproteinase nasulysin-1, and l-amino oxidase MipLAAO, avocado extracts, mitochondrial complex I inhibitor rotenone, metal chelator TPEN, antibiotic doxorubicin, and minocycline. Original published work by the authors and the PubMed database was consulted to compile this review. Therefore, this review aims to provide hematologists and physicians with an overview of results from in vitro models illustrating the complex interactions between metabolisms, natural and chemical molecules, OS, and apoptosis as therapeutic strategy against leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 748.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,476.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABL1 :

Abelson murine leukemia viral oncogene homolog 1

ALL :

acute lymphoblastic leukemia

AML :

acute myelogenous leukemia

BCR :

breakpoint cluster region

BAX :

Bcl-2-associated X protein

BAD :

Bcl-2-associated death promoter

BID :

BH3-interacting domain death agonist

BOK :

Bcl-2-related ovarian killer

BIK :

Bcl-2-interacting killer

BAK :

Bcl-2 homologous antagonist killer

CLL :

chronic lymphoblastic leukemia

CML :

chronic myelogenous leukemia

DOX :

doxorubicin

GS :

glucose starvation

H 2 O 2 :

hydrogen peroxide

MipLAAO :

Microrus mipartitus l-amino oxidase

MC :

minocyclin

OS :

oxidative stress

PUMA :

p53 upregulated modulator of apoptosis

ROS :

reactive oxygen species

ROT :

rotenone

RCD :

regulated cell death

TPEN :

N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine

TPGS :

D-α-tocopheryl polyethylene glycol succinate

VC :

vitamin C

VK3 :

vitamin K3

References

  • Bedoya-Medina J, Mendivil-Perez M, Rey-Suarez P, Jimenez-Del-Rio M, Núñez V, Velez-Pardo C (2019) L-amino acid oxidase isolated from Micrurus mipartitus snake venom (MipLAAO) specifically induces apoptosis in acute lymphoblastic leukemia cells mostly via oxidative stress-dependent signaling mechanism. Int J Biol Macromol 134:1052–1062

    Article  CAS  PubMed  Google Scholar 

  • Birkinshaw RW, Gong JN, Luo CS, Lio D, White CA, Anderson MA, Blombery P, Lessene G, Majewski IJ, Thijssen R, Roberts AW, Huang DCS, Colman PM, Czabotar PE (2019) Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat Commun 10:2385

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B (2019) Vitamin C as a modulator of the response to cancer therapy. Molecules 24(3)

    Google Scholar 

  • Bonilla-Porras AR, Jimenez-Del-Rio M, Velez-Pardo C (2011) Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism. Cancer Cell Int 11:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonilla-Porras AR, Salazar-Ospina A, Jimenez-Del-Rio M, Pereañez-Jimenez A, Velez-Pardo C (2014) Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells. Pharm Biol 52:458–465

    Article  Google Scholar 

  • Bonilla-Porras AR, Vargas LJ, Jimenez-Del-Rio M, Nuñez V, Velez-Pardo C (2016) Purification of nasulysin-1: a new toxin from Porthidium nasutum snake venom that specifically induces apoptosis in leukemia cell model through caspase-3 and apoptosis-inducing factor activation. Toxicon 120:166–174

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Porras AR, Arevalo-Arbelaez A, Alzate-Restrepo JF, Velez-Pardo C, Jimenez-Del-Rio M (2018) PARKIN overexpression in human mesenchymal stromal cells from Wharton’s jelly suppresses 6-hydroxydopamine-induced apoptosis: potential therapeutic strategy in Parkinson’s disease. Cytotherapy 20:45–61

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar C, Kumar PS, Sarma PVGK (2019) Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep 9:2412

    Article  PubMed  PubMed Central  Google Scholar 

  • Chio IIC, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23(5):411–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross N (2017) BCR-ABL Negative CML-Like Disorder. Clin Lymphoma Myeloma Leuk 17:S107–S108

    Article  Google Scholar 

  • Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent Signaling: homeostatic and pathological responses in mammalian cells. Cells 7(10). pii: E156

    Google Scholar 

  • Diaz-Aguirre V, Velez-Pardo C, Jimenez-Del-Rio M (2016) Fructose sensitizes Jurkat cells oxidative stress-induced apoptosis via caspase-dependent and caspase-independent mechanisms. Cell Biol Int 40:1162–1173

    Article  CAS  PubMed  Google Scholar 

  • Dieck CL, Ferrando A (2019) Genetics and mechanisms of NT5C2-driven chemotherapy resistance in relapsed ALL. Blood 133:2263–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Foster MN, Carr AC, Antony A, Peng S, Fitzpatrick MG (2018) Intravenous vitamin C administration improved blood cell counts and health-related quality of life of patient with history of relapsed acute myeloid leukaemia. Antioxidants (Basel) 7. pii: E92

    Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, 165 authors (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, Elia A, Berger T, Cescon DW, Adeoye A, Brüstle A, Molyneux SD, Mason JM, Li WY, Yamamoto K, Wakeham A, Berman HK, Khokha R, Done SJ, Kavanagh TJ, Lam CW, Mak TW (2015) Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27:211–222

    Article  CAS  PubMed  Google Scholar 

  • Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983) Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306(5940):239–242

    Article  CAS  PubMed  Google Scholar 

  • Kampen KR (2012) The discovery and early understanding of leukemia. Leuk Res 36:6–13

    Article  PubMed  Google Scholar 

  • Kinumi T, Kimata J, Taira T, Ariga H, Niki E (2004) Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem Biophys Res Commun 317:722–728

    Article  CAS  PubMed  Google Scholar 

  • Kitada T, Hikita R, Hirose H (2016) Parkin, Parkinson disease gene product, directly reduces hydrogen peroxide (mitochondrial oxidant), and forms dimerization reversibly. Int J Latest res Sci Technol 5:1–3

    Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G; Nomenclature Committee on Cell Death 2009 (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16:3–11

    Google Scholar 

  • Lin X, Qureshi MZ, Attar R, Khalid S, Tahir F, Yaqub A, Aslam A, Yaylim I, De Carlos Back LK, Farooqi AA, Ismail M (2016) Targeting of BCR-ABL: lessons learned from BCR-ABL inhibition. Cell Mol Biol (Noisy-le-Grand) 62:129–137

    CAS  Google Scholar 

  • Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of Cancer drug resistance: a brief review. Adv Pharm Bull 7:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride A, Houtmann S, Wilde L, Vigil C, Eischen CM, Kasner M, Palmisiano N (2019) The role of inhibition of apoptosis in acute Leukemias and myelodysplastic syndrome. Front Oncol 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2012) TPEN induces apoptosis independently of zinc chelator activity in a model of acute lymphoblastic leukemia and ex vivo acute leukemia cells through oxidative stress and mitochondria caspase-3- and AIF-dependent pathways. Oxidative Med Cell Longev 2012:313275

    Article  Google Scholar 

  • Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C (2013) Glucose starvation induces apoptosis in a model of acute T leukemia dependent on caspase-3 and apoptosis-inducing factor: a therapeutic strategy. Nutr Cancer 65:99–109

    Article  CAS  PubMed  Google Scholar 

  • Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C (2014) Response to rotenone is glucose-sensitive in a model of human acute lymphoblastic leukemia: involvement of oxidative stress mechanism, DJ-1, Parkin, and PINK-1 proteins. Oxidative Med Cell Longev 2014:457154

    Article  Google Scholar 

  • Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2015) Doxorubicin induces apoptosis in Jurkat cells by mitochondria-dependent and mitochondria-independent mechanisms under normoxic and hypoxic conditions. Anti-Cancer Drugs 26:583–598

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S (2010) The emperor of all maladies: a biography of cancer. Scribner, New York; Toronto

    Google Scholar 

  • Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117:2033–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SE, Maral Mouradian M (2018) Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol 14:211–217

    Article  CAS  PubMed  Google Scholar 

  • Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157

    Article  CAS  PubMed  Google Scholar 

  • Prokocimer M, Molchadsky A, Rotter V (2017) Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood 130:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reczek CR, Chandel NS (2017) The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 1:4.1–4.20

    Article  Google Scholar 

  • Rojas-Valencia L, Velez-Pardo C, Jimenez-Del-Rio M (2017) Metal chelator TPEN selectively induces apoptosis in K562 cells through reactive oxygen species signaling mechanism: implications for chronic myeloid leukemia. Biometals 30:405–421

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Moreno C, Jimenez-Del-Rio M, Sierra-Garcia L, Lopez-Osorio B, Velez-Pardo C (2016) Vitamin E synthetic derivate-TPGS-selectively induces apoptosis in jurkat t cells via oxidative stress signaling pathways: implications for acute lymphoblastic leukemia. Apoptosis 21:1019–1032

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Moreno C, Velez-Pardo C, Jimenez-Del-Rio M (2018) Minocycline induces apoptosis in acute lymphoblastic leukemia Jurkat cells. Toxicol In Vitro 50:336–346

    Article  CAS  PubMed  Google Scholar 

  • Samimi A, Kalantari H, Lorestani MZ, Shirzad R, Saki N (2018) Oxidative stress in normal hematopoietic stem cells and leukemia. APMIS 126:284–294

    Article  CAS  PubMed  Google Scholar 

  • Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2018) On the history of oxidative stress: concept and some aspects of current development. Curr Opinion Toxicol 7:122–126

    Article  Google Scholar 

  • Sung KW, Choi J, Hwang YK, Lee SJ, Kim HJ, Kim JY, Cho EJ, Yoo KH, Koo HH (2009) Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci 24:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasian SK, Loh ML, Hunger SP (2017) Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 130:2064–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wapner J (2013) The Philadelphia chromosome: a genetic mystery, a lethal cancer, and the improbable invention of a lifesaving treatment. The Experiment, New York

    Google Scholar 

  • Zhang J, Lei W, Chen X, Wang S, Qian W (2018) Oxidative stress response induced by chemotherapy in leukemia treatment. Mol Clin Oncol 8:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Chang H, Li H, Wang S (2017) Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 22:1321–1335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Antioquia, UdeA, and “Fundación Alfonso Moreno Jaramillo” grants #2017-16748 and #2018-20454 to CV-P and MJ-Del-R. The funders had no role, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Jimenez-Del-Rio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Velez-Pardo, C., Jimenez-Del-Rio, M. (2022). Hel** Leukemia Cells to Die with Natural or Chemical Compounds Through H2O2 Signaling. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_45

Download citation

Publish with us

Policies and ethics

Navigation