Enolase

A Common Factor to Cancer Cells and Stem Cells, Yet with Divergent Function in Response to ROS

  • Reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects
  • 118 Accesses

Abstract

Glycolysis is an ancient metabolic, oxygen-dependent, mostly cytosolic pathway that brings about conversion of glucose to pyruvate with the release of a hydrogen ion and ATP. Reactions in the glycolytic and the pentose phosphate pathways occur in metal-catalyzed, anaerobic Archean oceans, sometimes without enzymes also. Malignant tumor cells undergo glycolysis at ten times the frequency of their normal tissue counterparts. Hypoxia (decreased O2 supply) often occurs in tumor cells, making the cells adapt to this condition by relying on anaerobic glycolysis for ATP, resulting in overexpression of some enzymes in this pathway to generate energy. Factors damaging cells and promoting cancers, such as ROS (reactive oxygen species), are by-products of such inept cellular processes. Most cancers of various origins overexpress enolases, a group of glycolytic enzymes. Enolases primarily catalyze the interconversion of 2-phosphoglycerate and phosphoenolpyruvate in the glycolysis and gluconeogenesis. Similarly, stem cells express increased glycolytic activity; however, they thrive better in reduced ROS levels. In this chapter, we describe the function of enolases and their response to ROS. We also discuss their supplemental role in cancers and stem cells. Glycolysis has been extensively studied in stem cells; however, the role enolases play specifically remains elusive and leaves much to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altenberg B, Greenlich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Balzer E, Moss EG (2007) Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol 4:16–25

    Article  CAS  PubMed  Google Scholar 

  • Bertout JA, Majmundar AJ, Gordan JD, Lam JC, Ditsworth D et al (2009) HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. PNAS 106(34):14391–14396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigarella CL, Liang R, Ghaffari S (2014) Stem cells and the impact of ROS signalling. Development 141(22):4206–4218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capello M, Ferri-Borgogno S, Riganti C, Chattaragada MS, Principe M et al (2016) Targeting the Warburg effect in cancer cells through ENO1 knockdown rescues oxidative phosphorylation and induces growth arrest. Oncotarget 7(5):5598–5612

    Article  PubMed  Google Scholar 

  • Chang G-C, Liu K-J, Hsieh C-L, Hu TS, Charoenfuprasert S, Liu H-K et al (2006) Identification of α-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res 12(19):5746–5754

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Long X, Li X, **e M, Guo M (2011) The expression of enolase in the nasopharyngeal cancer tissue. J Clin Otorhinolaryngol Head Neck Surg 25:554–556

    CAS  Google Scholar 

  • Chu PY, Hsu NC, Liao AT, Shih NY, Hou MF, Liu CH (2011) Overexpression of alpha-enolase correlates with poor survival in canine mammary carcinoma. BMC Vet Res 7:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Comi GP, Fortunato F, Lucchiari S, Bordoni A, Prelle A et al (2001) Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol 50(2):202–207

    Article  CAS  PubMed  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM et al (2006) HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Ramos A, Roig-Borrellas A, García-Melero A, López-Alemany R (2012) α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012:Article ID 15679514

    Article  Google Scholar 

  • Dröge W (2002) Aging-related changes in the thiol/disulfide redox state: implications for the use of thiol antioxidants. Exp Gerontol 37:1333–1345

    Article  PubMed  Google Scholar 

  • Ejeskär K, Krona C, Carén H et al (2005) Introduction of in vitro transcribed ENO1 mRNA into neuroblastoma cells induces cell death. BMC Cancer 5:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A (2000) ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter binding protein 1 (MBP-1). FEBS Lett 473(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  CAS  PubMed  Google Scholar 

  • Fletcher L, Rider CC, Taylor CB (1976) Enolase isoenzymes. III. Biochim Biophys Acta 452(1):245–252

    Article  CAS  PubMed  Google Scholar 

  • Fougerousse F, Edom-Vovard F, Merkulova T, Ott MO, Durand M, Butler-Browne G, Keller AJ (2001) The muscle-specific enolase is an early marker of human myogenesis. Muscle Res Cell Motil 22(6):535–544

    Article  CAS  Google Scholar 

  • Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW et al (2015) Alpha-enolase promotes cell glycolysis, growth, migration and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol 8:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Giallongo A, Venturella S, Oliva D, Barbieri G, Rubino P, Feo S (1993) Structural features of the human gene for muscle-specific enolase. Differential splicing in the 5′-untranslated sequence generates two forms of mRNA. Eur J Biochem 214(2):367–374

    Article  CAS  PubMed  Google Scholar 

  • Holmström KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  PubMed  Google Scholar 

  • Iida H, Yahara IJN (1985) Yeast heat-shock protein of Mr 48,000 is an isoprotein of enolase. Nature 315:688–690

    Article  CAS  Google Scholar 

  • Ito K, Suda T (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 15(4):243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen-Heininger YMW, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem Sci 24(1):8–11

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Wang J, Guo J, Li Y, Lian S, Guo W, Yang H, Kong F, Zhen L, Guo L, Liu Y (2016) Progress in the biological function of alpha-enolase. Anim Nutr 2:12–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HJ et al (2008) A novel role for thioredoxin reductase in the iron metabolism of S. cerevisiae. Biochem Biophys Res Commun 371(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Kathagen A et al (2013) Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 126:763–780

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Okagawa Y, Suzuki F, Shimizu A, Mokuno K, Takahashi Y (1983) Immunoassay of human muscle enolase subunit in serum: a novel marker antigen for muscle diseases. Clin Chim Acta 131(1–2):75–85

    CAS  PubMed  Google Scholar 

  • Lohman K, Meyerhof O (1934) Ãœber die enzymatische umwandlung von phosphoglyzerinsäure in brenztraubensäure und phosphorsäure (enzymatic transformation of phosphoglyceric acid into pyruvic and phosphoric acid). Biochem Z 273:60–72

    Google Scholar 

  • McAlister L, Holland MJ (1982) Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J Biol Chem 257(12):7181–7188

    Article  CAS  PubMed  Google Scholar 

  • Merkulova T, Lucas M, Jabet C, Lamande` N, Rouzeau J-D et al (1997) Biochemical characterization of the mouse muscle-specific enolase: developmental changes in electrophoretic variants and selective binding to other proteins. Biochem J 323(3):791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BW, McGregor D (1965) Chromatographic and electrophoretic fractionation of soluble proteins of brain and liver. J Biol Chem 240:1647–1653

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancholi V (2001) Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58(7):902–920

    Article  CAS  PubMed  Google Scholar 

  • Peshavaria M, Day IN (1991) Molecular structure of the human muscle-specific enolase gene (ENO3). Biochem J 275(Pt2).

    Google Scholar 

  • Piast M, Kustrzeba-Wójcicka I, Matusiewicz M, BanaÅ› T (2005) Molecular evolution of enolase. Acta Biochim Pol 52(2):507–513

    Article  CAS  PubMed  Google Scholar 

  • Principe M, Ceruti P, Shih NY, Chattaragada MS, Rolla S, Conti L, Bestagno M et al (2015) Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget 6(13):11098–11113

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, Jiang Z, Feng L, Wang X, Zhou J, ** H (2017) Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer. Oncotarget 8:47691–47708

    Article  PubMed  PubMed Central  Google Scholar 

  • Santana-Rivera Y, Rabelo-Fernández RJ, Quiñones-Díaz BI, Grafals-Ruíz N, Santiago-Sánchez G et al (2020) Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. Am J Transl Res 12(4):1275–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sawhney S, Hood K, Shaw A, Braithwaite AW, Stubbs R, Hung WA et al (2015) Alpha-enolase is upregulated on the cell surface and responds to plasminogen activation in mice expressing a Δ133p53α mimic. PLoS One 10:e0116270

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedoris KC, Thomas SD, Miller DM (2007) C-myc promoter binding protein regulates the cellular response to an altered glucose concentration. Biochemistry 46(29):8659–8668

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Luo Q, Long H, Hu Z, Que T et al (2014) Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer 13:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Tahara EB, Navarete FDT, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takikita M, Altekruse S, Lynch CF, Goodman MT, Hernandez BY, Green M et al (2009) Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res 69:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varum S et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C-M, Luo Y-L, Li S, Li Z-X, Jiang L et al (2019) Multifunctional neuron-specific enolase: its role in lung diseases. Biosci Rep 39:427–433

    Google Scholar 

  • Yan GR, Xu SH, Tan ZL, Yin XF, He QY (2011) Proteomics characterization of gastrokine-1 – induced growth inhibition of gastric cancer cells. Proteomics 11:3657–3664

    Article  CAS  PubMed  Google Scholar 

  • Young RA, Elliott TJ (1989) Stress proteins, infection, and immune surveillance. Cell 59:5–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rizwani, W. (2022). Enolase. In: Chakraborti, S., Ray, B.K., Roychoudhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-9411-3_171

Download citation

Publish with us

Policies and ethics

Navigation