Single-Nucleotide Polymorphism

A Forensic Perspective

  • Living reference work entry
  • First Online:
Handbook of DNA Profiling

Abstract

In forensic analysis, the conventional short tandem repeat (STR) markers are routinely used for examination of the biological samples. But, in the challenging casework studies such as mass disaster or natural calamities, in which DNA samples are either highly degraded or are present in very minute quantity, single-nucleotide polymorphism (SNPs) serve as a potential marker of choice over STRs. Various techniques of SNP analysis such as molecular beacons, SNaPshot, DNA microarray, flow cytometry, and mass spectrometry opened the channels of analyzing forensic samples. Though SNPs pose certain limitations like low discrimination power, less number of alleles per loci, still, SNPs play a fundamental role in human identification, kinship analysis of genetically related individuals, complex paternity disputes, identification of suspect ethnicity, establishing biogeographical ancestry, as well as phenotypic information of missing suspect. Various databases are available for collection, integration, and analysis of SNP for their application in forensic science. As per forensic perspective, the method of standardization and validation of SNP markers, in consensus with legislators and the scientific community, need to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadian A, Gharizadeh B, Gustafsson AC, Sterky F, Nyrén P, Uhlén M, Lundeberg J (2000) Single-nucleotide polymorphism analysis by pyrosequencing. Anal Biochem 280(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Amigo J, Phillips C, Lareu M, Carracedo Á (2008) The SNP for ID browser: an online tool for query and display of frequency data from the SNP for ID project. Int J Legal Med 122(5):435–440

    Article  PubMed  Google Scholar 

  • Amorim A, Pereira L (2005) Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Forensic Sci Int 150(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne J (1997) Mass disaster genetics. Nat Genet 15(4):329–331

    Article  CAS  PubMed  Google Scholar 

  • Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40(3):340

    Article  CAS  PubMed  Google Scholar 

  • Beaudet L, Bédard J, Breton B, Mercuri RJ, Budarf ML (2001) Homogeneous assays for single-nucleotide polymorphism ty** using AlphaScreen. Genome Res 11(4):600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C, Budowle B, Butler JM, Carmody G, Conneally PM, Duceman B (2005) DNA identifications after the 9/11 World Trade Center attack. Science 310(5751):1122–1123

    Article  CAS  PubMed  Google Scholar 

  • Børsting C, Sanchez JJ, Hansen HE, Hansen AJ, Bruun HQ, Morling N (2008) Performance of the SNPforID 52 SNP-plex assay in paternity testing. Forensic Sci Int Genet 2(4):292–300

    Article  PubMed  Google Scholar 

  • Borsting C, Morling N (2011) Mutations and/or close relatives? Six case work examples where 49 autosomal SNPs were used as supplementary markers. Forensic Sci Int Genet 5:236–241

    Google Scholar 

  • Branicki W, Liu F, van Duijn K, Draus-Barini J, Pośpiech E, Walsh S, Kupiec T, Wojas-Pelc A, Kayser M (2011) Model-based prediction of human hair color using DNA variants. Hum Genet 129(4):443–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Budowle B (2004) SNP ty** strategies. Forensic Sci Int 146:S139–S142

    Article  CAS  PubMed  Google Scholar 

  • Budowle B, Van Daal A (2008) Forensically relevant SNP classes. BioTechniques 44(5):603–610

    Article  CAS  PubMed  Google Scholar 

  • Buetow KH, Edmonson MN, Cassidy AB (1999) Reliable identification of large numbers of candidate SNPs from public EST data. Nat Genet 21(3):323–325

    Article  CAS  PubMed  Google Scholar 

  • Bulbul O, Phillips C, Argac D, Shahzad MS, Fondevilla M, Acar E, Aradas AF, Filoglu G, Altuncul H (2009) Internal validation of 29 autosomal SNP multiplex using a ABI 310 genetic analyser. Forensic Sci Int Genet Suppl Ser 2(1):129–130

    Article  Google Scholar 

  • Butler JM (2011) Advanced topics in forensic DNA ty**: methodology. Academic Press, pp 347–362

    Google Scholar 

  • Butler JM, Coble MD, Vallone PM (2007) STRs vs. SNPs: thoughts on the future of forensic DNA testing. Forensic Sci Med Pathol 3(3):200–205

    Article  CAS  PubMed  Google Scholar 

  • Cai H, White PS, Torney D, Deshpande A, Wang Z, Marrone B, Nolan JP (2000) Flow cytometry-based minisequencing: a new platform for high-throughput single-nucleotide polymorphism scoring. Genomics 66(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Canturk KM, Emre R, Kınoglu K, Başpınar B, Sahin F, Ozen M (2014) Current status of the use of single-nucleotide polymorphisms in forensic practices. Genet Test Mol Biomarkers 18(7):455–460

    Article  PubMed  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Science 274(5287):610–614

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Yu HJ, Han J, Kim Y, Lee J, Lee SD (2014) Forensic application of SNP-based resequencing array for individual identification. Forensic Sci Int Genet 13:45–52

    Article  CAS  PubMed  Google Scholar 

  • Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29(2):229–232

    Article  CAS  PubMed  Google Scholar 

  • do Valle-Silva G, de Souza FDN, Marcorin L, Pereira ALE, Carratto TMT, Debortoli G, de Oliveira MLG, de Aguiar Fracasso NC, de Andrade ES, Donadi EA, Norton HL (2019) Applicability of the SNPforID 52-plex panel for human identification and ancestry evaluation in a Brazilian population sample by next-generation sequencing. Forensic Sci Int Genet 40:201–209

    Article  CAS  PubMed  Google Scholar 

  • Fondevila M, Phillips C, Naveran N, Fernandez L, Cerezo M, Salas A, Carracedo A, Lareu MV (2008) Case report: identification of skeletal remains using short-amplicon marker analysis of severely degraded DNA extracted from a decomposed and charred femur. Forensic Sci Int Genet 2(3):212–218

    Article  CAS  PubMed  Google Scholar 

  • Fondevila M, Børsting C, Phillips C, De La Puente M, Carracedo A, Morling N, Lareu MV, EN Consortium (2017) Forensic SNP genoty** with SNaPshot: technical considerations for the development and optimization of multiplexed SNP assays. Forensic Sci Rev 29(1):57–76

    CAS  PubMed  Google Scholar 

  • Frudakis T, Venkateswarlu K, Thomas M, Gaskin Z, Ginjupalli S, Gunturi S, Ponnuswamy V, Natarajan S, Nachimuthu PK (2003) A classifier for the SNP-based inference of ancestry. J Forensic Sci 48(4):771–782

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RA, Belmont JW, Hardenbol P, Willis TD, Yu FL, Yang HM, Ch’ang LY, Huang W, Liu B, Shen Y, Tam PKH, Tsui LC, Waye MMY, Wong JTF, Zeng CQ (2003) The international HapMap project. Nature 426(6968):789–796

    Google Scholar 

  • Giesen U, Kleider W, Berding C, Geiger A, Ørum H, Nielsen PE (1998) A formula for thermal stability (T m) prediction of PNA/DNA duplexes. Nucleic Acids Res 26(21):5004–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill P (2001) An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int J Legal Med 114(4):204–210

    Article  CAS  PubMed  Google Scholar 

  • Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol 17(4):365–370

    Article  CAS  PubMed  Google Scholar 

  • Griffin TJ, Smith LM (2000) Single-nucleotide polymorphism analysis by MALDI–TOF mass spectrometry. Trends Biotechnol 18(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80(4):524–535

    Google Scholar 

  • Han J, Kraft P, Nan H, Guo Q, Chen C, Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, Martin NG (2008) A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4(5):e1000074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang TJ, Liu M, Knight LD, Grody WW, Miller JF, Ho CM (2002) An electrochemical detection scheme for identification of single nucleotide polymorphisms using hairpin-forming probes. Nucleic Acids Res 30(12):e55–e55

    Article  PubMed  PubMed Central  Google Scholar 

  • Hüebner C, Petermann I, Browning BL, Shelling AN, Ferguson LR (2007) Triallelic single nucleotide polymorphisms and genoty** error in genetic epidemiology studies: MDR1 (ABCB1) G2677/T/A as an example. Cancer Epidemiol Prev Biomarkers 16(6):1185–1192

    Article  CAS  Google Scholar 

  • Jehan T, Lakhanpaul S (2006) Single nucleotide polymorphism (SNP)–methods and applications in plant genetics: a review. IJBT 05(4):435–359

    Google Scholar 

  • ** X, Zhang X, Shen C, Liu Y, Cui W, Chen C, Guo Y, Zhu B (2020) A highly polymorphic panel consisting of microhaplotypes and compound markers with the NGS and its forensic efficiency evaluations in Chinese two groups. Gene 11(9):1027

    Article  CAS  Google Scholar 

  • Kayser M, Liu F, Janssens ACJ, Rivadeneira F, Lao O, van Duijn K, Vermeulen M, Arp P, Jhamai MM, van IJcken, W.F. and den Dunnen, J.T. (2008) Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am J Hum Genet 82(2):411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheterpal I, Mathies RA (1999) Peer reviewed: capillary Array electrophoresis DNA sequencing. Anal Chem 71(1):31A–37A

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina EK, Salina EA (2006) SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Russ J Genet 42(6):585–594

    Article  CAS  Google Scholar 

  • Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, Kungulilo S, Kim JJ, Lu RB, Odunsi A, Okonofua F (2006) Develo** a SNP panel for forensic identification of individuals. Forensic Sci Int 164(1):20–32

    Article  CAS  PubMed  Google Scholar 

  • Kiesler KM, Vallone PM (2013) Allele frequencies for 40 autosomal SNP loci typed for US population samples using electrospray ionization mass spectrometry. Croat Med J 54(3):225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita-Kikuta E, Kinoshita E, Koike T (2002) A novel procedure for simple and efficient genoty** of single nucleotide polymorphisms by using the Zn2+-cyclen complex (vol 30, art no e126, 2002). Nucleic Acids Res 30(24):5593–5593

    CAS  Google Scholar 

  • Kirk BW, Feinsod M, Favis R, Kliman RM, Barany F (2002) Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 30(15):3295–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kota R, Wolf M, Michalek W, Graner A (2001) Application of denaturing high-performance liquid chromatography for map** of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome 44(4):523–528

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012

    Google Scholar 

  • Kwok PY, Chen X (2003) Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43–60

    CAS  PubMed  Google Scholar 

  • Li R, Norman S, Schober J (2015) Forensic biology. CRC Press, pp 333–343

    Google Scholar 

  • Liu F, van Duijn K, Vingerling JR, Hofman A, Uitterlinden AG, Janssens ACJ, Kayser M (2009) Eye color and the prediction of complex phenotypes from genotypes. Curr Biol 19(5):R192–R193

    Article  CAS  PubMed  Google Scholar 

  • Lyamichev V, Mast AL, Hall JG, Prudent JR, Kaiser MW, Takova T, Kwiatkowski RW, Sander TJ, de Arruda M, Arco DA, Neri BP (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17(3):292–296

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov TT, Rendie RB, Goelet P, Rogers YH, Kotewicz ML, Anderson S, Trainor GL, Knapp MR (1994) Genetic Bit Analysis: a solid phase method for ty** single nucleotide polymorphisms. Nucleic Acids Res 22(20):4167–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265(5181):2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Norrgard K, Schultz J (2008) Using SNP data to examine human phenotypic differences. Nature Education 1(1):85

    Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5(4):874–879

    Article  CAS  PubMed  Google Scholar 

  • Ørum H, Nielsen PE, Egholm M, Berg RH, Buchardt O, Stanley C (1993) Single base pair mutation analysis by PNA directed PCR clam**. Nucleic Acids Res 21(23):5332–5336

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakstis AJ, Speed WC, Fang R, Hyland FC, Furtado MR, Kidd JR, Kidd KK (2010) SNPs for a universal individual identification panel. Hum Genet 127(3):315–324

    Article  PubMed  Google Scholar 

  • Phillips C (2009) SNP databases. Methods Mol Biol 578:43–71. https://doi.org/10.1007/978-1-60327-411-1_3

    Article  CAS  PubMed  Google Scholar 

  • Phillips C, Amigo J, Carracedo Á, Lareu MV (2015) Tetra-allelic SNPs: informative forensic markers compiled from public whole-genome sequence data. Forensic Sci Int Genet 19:100–106

    Article  CAS  PubMed  Google Scholar 

  • Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Investig Genet 4(1):1–10

    Article  CAS  Google Scholar 

  • Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M, Harrison CD, Musgrave-Brown E, Salas A, Syndercombe-Court D, Schneider PM (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27(9):1713–1724

    Article  CAS  PubMed  Google Scholar 

  • Smigielski EM, Sirotkin K, Ward M, Sherry ST (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, Manolescu A, Karason A, Palsson A, Thorleifsson G, Jakobsdottir M (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet 39(12):1443–1452

    Article  CAS  PubMed  Google Scholar 

  • Tishkoff SA, Verrelli BC (2003) Role of evolutionary history on haplotype block structure in the human genome: implications for disease map**. Curr Opin Genet Dev 13(6):569–575

    Article  CAS  PubMed  Google Scholar 

  • Tomas C, Diez IE, Moncada E, Børsting C, Morling N (2013) Analysis of 49 autosomal SNPs in an Iraqi population. Forensic Sci Int Genet 7(1):198–199

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Walsh S, Liu F, Wollstein A, Kovatsi L, Ralf A, Kosiniak-Kamysz A, Branicki W, Kayser M (2013) The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci Int Genet 7(1):98–115

    Article  CAS  PubMed  Google Scholar 

  • Yousefi S, Abbassi-Daloii T, Kraaijenbrink T, Vermaat M, Mei H, van’t Hof P, van Iterson M, Zhernakova DV, Claringbould A, Franke L, M’t Hart L (2018) A SNP panel for identification of DNA and RNA specimens. BMC Genomics 19(1):1–12

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gang, A., Shrivastav, V.K. (2021). Single-Nucleotide Polymorphism. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-15-9364-2_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9364-2_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9364-2

  • Online ISBN: 978-981-15-9364-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation