Polymer Solar Cells: Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders

  • Chapter
  • First Online:
Organic Solar Cells

Abstract

This chapter will summarize the development of π-conjugated polymers with donor–acceptor motifs, specifically, based on thiazolothiazole and naphthobischalcogenadiazoles as the acceptor unit. It is found that careful design of the molecular structure, the crystallinity and the backbone orientation of the polymers can be controlled. With the crystalline structure and favorable face-on backbone orientation, the polymers show high power conversion efficiencies, in particular, with thick active layers of around 300 nm. Further, a polymer system with naphthobisoxadiazole, with a deep molecular orbital energy levels, allows us to have a significantly high open-circuit voltages of close to 1 V even with a narrow bandgap of ~1.5 eV, resulting in a markedly small photon energy loss. These findings will provide beneficial guidelines for the development of high-performance π-conjugated polymers for organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brabec, C., Scherf, U., Doyakonov, V.: Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, Wiley-VCH (2008)

    Google Scholar 

  2. Liang, Y., Xu, Z., **a, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., Yu, L.: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. Vohra, V., Kawashima, K., Kakara, T., Koganezawa, T., Osaka, I., Takimiya, K., Murata, H.: Efficient inverted polymer solar cells employing favourable molecular orientation. Nat. Photon 9, 403–408 (2015)

    Article  CAS  Google Scholar 

  4. Yuan, J., Zhang, Y., Zhou, L., Zhang, G., Yip, H.-L., Lau, T.K., Lu, X., Zhu, C., Peng, H., Johnson, P.A., Leclerc, M., Cao, Y., Ulanski, J., Li, Y., Zou, Y.: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140 (2019)

    Article  CAS  Google Scholar 

  5. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  CAS  Google Scholar 

  6. Hiramoto, M., Fujiwara, H., Yokoyama, M.: Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58, 1062–1064 (1991)

    Article  CAS  Google Scholar 

  7. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1790 (1995)

    Article  CAS  Google Scholar 

  8. Gnes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Article  Google Scholar 

  9. Osaka, I., McCullough, R.D.: Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  CAS  Google Scholar 

  11. Zhao, G., He, Y., Li, Y.: 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv. Mater. 22, 4355–4358 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Article  CAS  Google Scholar 

  13. Biniek, L., Schroeder, B.C., Nielsen, C.B., McCulloch, I.: Recent advances in high mobility donor–acceptor semiconducting polymers. J. Mater. Chem. 22, 14803–14813 (2012)

    Article  CAS  Google Scholar 

  14. Mühlbacher, D., Scharber, M., Morana, M., Zhu, Z., Waller, D., Gaudiana, R., Brabec, C.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006)

    Article  Google Scholar 

  15. Osaka, I., Takimiya, K.: Backbone orientation in semiconducting polymers. Polymer 59, A1–A15 (2015)

    Article  CAS  Google Scholar 

  16. Ando, S., Nishida, J., Inoue, Y., Tokito, S., Yamashita, Y.: Synthesis, physical properties, and field-effect transistors of novel thiophene/thiazolothiazole co-oligomers. J. Mater. Chem. 14, 1787–1790 (2004)

    Article  CAS  Google Scholar 

  17. Ando, S., Nishida, J., Fujiwara, E., Tada, H., Inoue, Y., Tokito, S., Yamashita, Y.: Characterization and field-effect transistor performance of heterocyclic oligomers containing a thiazolothiazole unit. Chem. Lett. 33, 1170–1171 (2004)

    Article  CAS  Google Scholar 

  18. Ando, S., Nishida, J., Tada, H., Inoue, Y., Y, S., Yamashita, S.: High performance n-type organic field-effect transistors based on π-electronic systems with trifluoromethylphenyl groups. J. Am. Chem. Soc. 127, 5336–5337 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Peng, Q., Peng, J.-B., Kang, E.T., Neoh, K.G., Cao, Y.: Synthesis and electroluminescent properties of copolymers based on fluorene and 2, 5-di(2-hexyloxyphenyl) thiazolothiazole. Macromolecules 38, 7272–7298 (2005)

    Article  Google Scholar 

  20. Osaka, I., Sauvé, G., Zhang, R., Kowalewski, T., McCullough, R.D.: Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv. Mater. 19, 4160–4165 (2007)

    Article  CAS  Google Scholar 

  21. Osaka, I., Zhang, R., Sauvé, G., Smilgies, D.M., Kowalewski, T., McCullough, R.D.: High-lamellar ordering and amorphous-like π-network in short-chain thiazolothiazole-thiophene copolymers lead to high mobilities. J. Am. Chem. Soc. 131, 2521–2529 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M.L., Kline, R.J., McGehee, M.D., Toney, M.F.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Osaka, I., Saito, M., Mori, H., Koganezawa, T., Takimiya, K.: Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Adv. Mater. 24, 425–430 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Osaka, I., Zhang, R., Liu, J., Smilgies, D.M., Kowalewski, T., McCullough, R.D.: Highly stable semiconducting polymers based on thiazolothiazole. Chem. Mater. 22, 4191–4196 (2010)

    Article  CAS  Google Scholar 

  25. Osaka, I., Saito, M., Koganezawa, T., Takimiya, K.: Thiophene–thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Saito, M., Koganezawa, T., Osaka, I.: Correlation between distribution of polymer orientation and cell structure in organic photovoltaics. ACS Appl. Mater. Interfaces. 10, 32420–32425 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488–5519 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Duong, D.T., Toney, M.F., Salleo, A.: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev. B 86, 205205 (2012)

    Article  Google Scholar 

  29. Xu, Z., Chen, L.-M., Yang, G., Huang, C.-H., Hou, J., Wu, J., Li, G., Hsu, C.-S., Yang, Y.: Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Funct. Mater. 19, 1227–1234 (2009)

    Article  CAS  Google Scholar 

  30. Guo, S., Zhou, N., Lou, S.J., Smith, J., Tice, D.B., Hennek, J.W., Ortiz, R.P., Navarrete, J.T.L., Li, S., Strzalka, J., Chen, L.X., Chang, R.P.H., Facchetti, A., Marks, T.J.: Polymer solar cells with enhanced fill factors. Nat. Photon 7, 825–833 (2013)

    Article  CAS  Google Scholar 

  31. Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletetê, M., Durocher, G., Tao, Y., Leclerc, M.: Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J. Am. Chem. Soc. 130, 732–742 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, E., Cong, J., Hashimoto, K., Tajima, K.: A benzoselenadiazole-based low band gap polymer: synthesis and photovoltaic application. Macromolecules 46, 763–768 (2013)

    Article  CAS  Google Scholar 

  33. Kawashima, K., Osaka, I., Takimiya, K.: Effect of chalcogen Aatom on the properties of naphthobischalcogenadiazole-based π-conjugated polymers. Chem. Mater. 27, 6558–6570 (2015)

    Article  CAS  Google Scholar 

  34. Zhang, Z., Lin, F., Chen, H.C., Wu, H.C., Chung, C.L., Lu, C., Liu, S.H., Tung, S.H., Chen, W.C., Wong, K.T., Chou, P.T.: A Silole copolymer containing a ladder-type Heptacylic Arene and Naphthobisoxadiazole Moieties for highly efficient polymer solar cells. Energy Environ. Sci. 8, 552–557 (2015)

    Article  CAS  Google Scholar 

  35. Wang, M., Hu, X., Liu, P., Li, W., Gong, X., Huang, F., Cao, Y.: Donor–acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133, 9638–9641 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. Osaka, I., Shimawaki, M., Mori, H., Doi, I., Miyazaki, E., Koganezawa, T., Takimiya, K.: Synthesis, characterization, and transistor and solar Cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134, 3498–3507 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Mataka, S., Takahashi, K., Ikezaki, Y., Hatta, T., Tori-i, A., Tashiro, M.: Sulfur nitride in organic chemsitry. XIV, selective formation of benzo-and benzobis [1,2,5]thiadiazole skeleton in the reaction of tetrasulfur tetranitride with naphthalenols and related compounds. Bull. Chem. Soc. Jpn. 64, 68–73 (1991)

    Article  CAS  Google Scholar 

  38. Osaka, I., Takimiya, K.: Naphthobischalcogenadiazole conjugated polymers: emerging materials for organic electronics. Adv. Mater. 39, 1605218 (2017)

    Article  Google Scholar 

  39. Rieger, R., Beckmann, D., Mavrinskiy, A., Kastler, M., Müllen, K.: Backbone curvature in polythiophenes. Chem. Mater. 22, 5314–5318 (2010)

    Article  CAS  Google Scholar 

  40. Osaka, I., Abe, T., Shinamura, S., Takimiy, K.: Impact of isomeric structures on transistor performances in naphthodithiophene semiconducting polymers. J. Am. Chem. Soc. 133, 6852–6860 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Veldman, D., Meskers, S.C.J., Janssen, R.A.J.: The energy of charge-transfer states in electron donor–acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 1939–1948 (2009)

    Article  CAS  Google Scholar 

  42. King, R.R., Bhusari, D., Boca, A., Larrabee, D., Liu, X.Q., Hong, W., Fetzer, C.M., Law, D.C., Karam, N.H.: Band gap-voltage offset and energy production in next-generation multijunction solar cells. Prog. Photovolt 19, 797–812 (2011)

    Article  CAS  Google Scholar 

  43. Wang, M., Wang, H., Yokoyama, T., Liu, X., Huang, Y., Zhang, Y., Nguyen, T.Q., Aramaki, S., Bazan, G.C.: High open circuit voltage in regioregular narrow band gap polymer solar cells. J. Am. Chem. Soc. 136, 12576–12579 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon 8, 506–514 (2014)

    Article  CAS  Google Scholar 

  45. Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J.: Design rules for donors in bulk-heterojunction solar cells –towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Article  CAS  Google Scholar 

  46. Dimitrov, S.D., Durrant, J.R.: Materials design considerations for charge generation in organic solar cells. Chem. Mater. 26, 616–630 (2014)

    Article  CAS  Google Scholar 

  47. Zhou, H., Yang, L., Stuart, A.C., Price, S.C., Liu, S., You, W.: Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011)

    Article  CAS  Google Scholar 

  48. Kawashima, K., Fukuhara, T., Suda, Y., Suzuki, Y., Koganezawa, T., Yoshida, H., Ohkita, H., Osaka, I., Takimiya, K.: Implication of Fluorine Atom on Electronic Properties, Ordering Structures, and Photovoltaic Performance in Naphthobisthiadiazole-Based Semiconducting Polymers. J. Am. Chem. Soc. 138, 10265–10275 (2016)

    Article  CAS  PubMed  Google Scholar 

  49. Saito, M., Fukuhara, T., Kamimura, S., Ichikawa, H., Yoshida, H., Koganezawa, T., Ie, Y., Tamai, Y., Kim, H.-D., Ohkita, H., Osaka, I.: Impact of noncovalent sulfur–fluorine interaction position on properties, structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. Adv Energy Mater 10, 1903278 (2020)

    Article  CAS  Google Scholar 

  50. Yoshida, H.: Principle and application of low energy inverse photoemission spectroscopy: a new method for measuring unoccupied states of organic semiconductors. J. Electron Spectrosc. Relat. Phenom. 204, 116–124 (2015)

    Article  CAS  Google Scholar 

  51. Kawashima, K., Tamai, Y., Ohkita, H., Osaka, I., Takimiya, K.: High-efficiency polymer solar cells with small photon energy loss. Nat. Commun. 6, 10085 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brédas, J.L., Norton, J.E., Cornil, J., Coropceanu, V.: Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42, 1691–1699 (2009)

    Article  PubMed  Google Scholar 

  53. Brédas, J.L.: Mind the gap! Mater. Horiz. 1, 17–19 (2014)

    Article  Google Scholar 

  54. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., Manca, J.V.: On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904–909 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. Vandewal, K., Ma, Z., Bergqvist, J., Tang, Z., Wang, E., Henriksson, P., Tvingstedt, K., Andersson, M.R., Zhang, F., Inganäs, O.: Quantification of quantum efficiency and energy losses in low bandga polymer:fullerene solar cells with high open-circuit voltage. Adv. Funct. Mater. 22, 3480–3490 (2012)

    Article  CAS  Google Scholar 

  56. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  57. Li, W., Hendriks, K.H., Furlan, A., Wienk, M.M., Janssen, R.A.J.: High quantum efficiencies in polymer solar cells at energy losses below 0.6 eV. J. Am. Chem. Soc. 137, 2231–2234 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen, C.B., Holliday, S., Chen, H.-Y., Cryer, S.J., McCulloch, I.: Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hou, J., Inganäs, O., Friend, R.H., Gao, F.: Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17, 119–128 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J., Tan, H.S., Guo, X., Facchetti, A., Yan, H.: Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 3, 720–731 (2018)

    Article  CAS  Google Scholar 

  61. Liu, Q., Jiang, Y., **, K., Qin, J., Xu, J., Li, W., **ong, J., Liu, J., **ao, Z., Sun, K., Yang, S., Zhang, X., Ding, L.: 18% Efficiency organic solar cells. Sci. Bull. 65, 272–275 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to KAKENHI (24685030 and 16H04196) from Japan Society for the Promotion of Science and Precursory Research for Embryonic Science and Technology (PRESTO) and the Advanced Low Carbon Technology Research and Development (ALCA) Programs from Japan Science and Technology Agency for funding. The author thanks Dr. M. Saito, Dr. K. Kawashima, Dr. Y. Tamai, Dr. V. Vohra, Dr. T. Koganezawa, Prof. K. Takimiya, Prof. H. Murata, Prof. H. Yoshida, Prof. Y. Ie, and Prof. H. Ohkita for their collaborative works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Osaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osaka, I. (2021). Polymer Solar Cells: Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_5

Download citation

Publish with us

Policies and ethics

Navigation