OPV with a Crystalline Organic Pigment Active Layer Up to 10 μm

  • Chapter
  • First Online:
Organic Solar Cells
  • 806 Accesses

Abstract

For the photoelectric conversion layer that converts light energy and electric energy, the thickness of using organic pigments as a photoelectric conversion layer has usually been limited to a thickness on the order of nm. This is because when the photoelectric conversion layer is prepared by mixing the organic pigment, the electric resistance often increases. For example, in organic light-emitting diodes that have been used for large-screen TVs and mobile phone displays in recent years, and in organic photovoltaic cells (OPVs) that are expected to be one of the next-generation solar cells, the thickness of organic pigments is usually several tens of nm. The thickness of OPVs that use organic polymers instead of organic pigments often exceeds several hundred nm. In both material systems, only a small number of examples of normal operation with thickness close to 1 µm (=1,000 nm) are reported. Although it is principally clear that, as the thickness increases, the proportion of light that can be absorbed increases and the current that can be generated increases, this simple relation has not been demonstrated with real OPV devices due to the difficulty to fabricate thick OPVs. This chapter introduces that if an organic pigment is properly crystallized, it can be used as a photoelectric conversion layer of an OPV even if it is thickened to 10 µm, and this chapter also introduces a demonstration of the relationship in which the light absorbed by the pigment and the generated current correspond in a neat manner in a wide range of thickness (40 nm–1 µm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 09 March 2021

    In the original version of the book, the following chapters corrections have been incorporated:

    The erratum chapters and book have been updated with the changes.

References

  1. Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018)

    Google Scholar 

  2. Kang, H., et al.: Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv. Mater. 28, 7821–7861 (2016)

    Article  CAS  Google Scholar 

  3. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T., Krebs, F.C.: Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 1–2 (2012)

    Article  Google Scholar 

  4. Dou, L., et al.: 25th anniversary article: a decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013)

    Article  CAS  Google Scholar 

  5. Roncali, J., Leriche, P., Blanchard, P.: Molecular materials for organic photovoltaics: small is beautiful. Adv. Mater. 26, 3821–3838 (2014)

    Article  CAS  Google Scholar 

  6. Mishra, A., Bäuerle, P.: Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020–2067 (2012)

    Article  CAS  Google Scholar 

  7. Kaji, T., et al.: Co-evaporant induced crystalline donor: acceptor blends in organic solar cells. Adv. Mater. 23, 3320–3325 (2011)

    Article  CAS  Google Scholar 

  8. Song, B., Rolin, C., Zimmerman, J.D., Forrest, S.R.: Effect of mixed layer crystallinity on the performance of mixed heterojunction organic photovoltaic cells. Adv. Mater. 26, 2914–2918 (2014)

    Article  CAS  Google Scholar 

  9. Luo, G., et al.: Recent advances in organic photovoltaics: device structure and optical engineering optimization on the nanoscale. Small 12, 1547–1571 (2016)

    Article  CAS  Google Scholar 

  10. Riede, M., et al.: Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21, 3019–3028 (2011)

    Article  CAS  Google Scholar 

  11. Zhou, Y., et al.: Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics. App. Phys. Lett. 100, 233302 (2012)

    Article  Google Scholar 

  12. Pfuetzner, S., Meiss, J., Petrich, A., Riede, M., Leo, K.: Thick C60:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates. App. Phys. Lett. 94, 253303 (2009)

    Article  Google Scholar 

  13. Wang, Z., Miyadera, T., Yamanari, T., Yoshida, Y.: Templating effects in molecular growth of blended films for efficient small-molecule photovoltaics. ACS Appl. Mater. Interf. 6, 6369–6377 (2014)

    Article  CAS  Google Scholar 

  14. Schueppel, R., et al.: Controlled current matching in small molecule organic tandem solar cells using doped spacer layers. J. Appl. Phys. 107, 044503 (2010)

    Article  Google Scholar 

  15. Xue, J., Rand, B.P., Uchida, S., Forrest, S.R.: A hybrid planar–mixed molecular heterojunction photovoltaic cell. Adv. Mater. 17, 66–71 (2005)

    Article  CAS  Google Scholar 

  16. Ko, S.-J., et al.: Photocurrent extraction efficiency near unity in a thick polymer bulk heterojunction. Adv. Funct. Mater. 26, 3324–3330 (2016)

    Article  CAS  Google Scholar 

  17. Osaka, I., Saito, M., Koganezawa, T., Takimiya, K.: Thiophene-thiazolothiazole copolymers: significant impact of side chain composition on backbone orientation and solar cell performances. Adv. Mater. 26, 331–338 (2014)

    Article  CAS  Google Scholar 

  18. Jung, J.W., Russell, T.P., Jo, W.H.: Highly crystalline low band gap polymer based on Thieno[3,4-c]pyrrole-4,6-dione for high-performance polymer solar cells with a >400 nm thick active layer. ACS Appl. Mater. Interf. 7, 13666–13674 (2015)

    Article  CAS  Google Scholar 

  19. **, Y., et al.: A Novel Naphtho[1,2-c:5,6-c′]Bis([1,2,5]Thiadiazole)-Based Narrow-Bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 28, 9811–9818 (2016)

    Article  CAS  Google Scholar 

  20. Sakai, K., Hiramoto, M.: Efficient organic p-i-n solar cells having very thick co-deposited i-layer consisting of highly purified organic semiconductors. Mol. Cryst. Liq. Cryst. 491, 284–289 (2008)

    Article  CAS  Google Scholar 

  21. Price, S.C., Stuart, A.C., Yang, L., Zhou, H., You, W.: Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 133, 4625–4631 (2011)

    Article  CAS  Google Scholar 

  22. Katayama, M., Kaji, T, Nakao, S., Hiramoto, M.: Ultra-thick organic pigment layer up to 10 μm activated by crystallization in organic photovoltaic cells. Front. Energy Res. 8(4), 1–12 (2020)

    Google Scholar 

  23. Holzmueller, F., et al.: Co-evaporant induced crystallization of zinc phthalocyanine:C60 blends for solar cells. Org. Electron. 27, 133–136 (2015)

    Article  CAS  Google Scholar 

  24. Iketaki, K., Kaji, T., Nakao, S., Hiramoto, M.: Structural studies of the co-deposited i-layer of ZnPc:C60 p-i-n solar cells. Phys. Status Solidi C 8, 637–639 (2011)

    Article  CAS  Google Scholar 

  25. Kaji, T., Nakao, S., Hiramoto, M.: Effect of co-evaporant induced crystallization on needle growth of phthalocyanine thin films. Mol. Cryst. Liq. Cryst. 578, 63–67 (2013)

    Article  CAS  Google Scholar 

  26. Lee, J., Park, D., Heo, I., Yim, S.: Effect of cuprous halide interlayers on the device performance of ZnPc/C60 organic solar cells. Mater. Res. Bull. 58, 132–135 (2014)

    Article  CAS  Google Scholar 

  27. Cheng, C.H., et al.: Organic solar cells with remarkable enhanced efficiency by using a CuI buffer to control the molecular orientation and modify the anode. Appl. Phys. Lett. 97, 083305 (2010)

    Article  Google Scholar 

  28. Xue, J., Uchida, S., Rand, B.P., Forrest, S.R.: Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 85, 5757–5759 (2004)

    Article  CAS  Google Scholar 

  29. Maennig, B., et al.: Organic p-i-n solar cells. Appl. Phys. A 79, 1–14 (2004)

    Article  CAS  Google Scholar 

  30. Mori, T., Masumoto, Y.: Effect of organic alloy for suppression of polycrystallization in BCP thin film. J. Photopolym. Sci. Technol. 19, 209–214 (2006)

    Article  CAS  Google Scholar 

  31. Bartynski, A.N., et al.: A fullerene-based organic exciton blocking layer with high electron conductivity. Nano Lett. 13, 3315–3320 (2013)

    Article  CAS  Google Scholar 

  32. **ao, X., Bergemann, K.J., Zimmerman, J.D., Lee, K., Forrest, S.R.: Small-molecule planar-mixed heterojunction photovoltaic cells with fullerene-based electron filtering buffers. Adv. Energy Mater. 4, 1301557 (2014)

    Article  Google Scholar 

  33. Kao, P.-C., Chu, S.-Y., Huang, H.-H., Tseng, Z.-L., Chen, Y.-C.: Improved efficiency of organic photovoltaic cells using tris (8-hydroxy-quinoline) aluminum as a do** material. Thin Solid Films 517, 5301–5304 (2009)

    Article  CAS  Google Scholar 

  34. Wang, D., et al.: Solution-processed organic films of multiple small-molecules and white light-emitting diodes. Org. Electron. 11, 641–648 (2010)

    Article  CAS  Google Scholar 

  35. Long, Z., et al.: The electroluminescence mechanism of non-do** PhOLEDs based on CBP/Ir(ppy)3 investigated by delayed EL measurements. Org. Electron. 28, 225–228 (2016)

    Article  CAS  Google Scholar 

  36. Chen, Y.-H., et al.: Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. J. Am. Chem. Soc. 134, 13616–13623 (2012)

    Article  CAS  Google Scholar 

  37. Sakai, J., Taima, T., Yamanari, T., Saito, K.: Annealing effect in the sexithiophene:C70 small molecule bulk heterojunction organic photovoltaic cells. Sol. Energy Mater. Sol. Cells 93, 1149–1153 (2009)

    Article  CAS  Google Scholar 

  38. Wang, N., Yu, J., Zang, Y., Huang, J., Jiang, Y.: Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60. Sol. Energy Mater. Sol. Cells 94, 263–266 (2010)

    Article  CAS  Google Scholar 

  39. Sai, H., Matsui, T. and Matsubara, K. Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell. Appl. Phys. Lett. 109, 183506 (2016)

    Google Scholar 

  40. Chattopadhyay, S., et al.: Anti-reflecting and photonic nanostructures. Mat. Sci. Eng. R. 69, 1–35 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This section is written based on the results of collaboration with Mr. Mikimasa Katayama (at that time) at Tokyo University of Agriculture and Technology, and Professor Masahiro Hiramoto and Dr. Satoshi Nakao (at that time) at the Institute for Molecular Science. We would like to thank Professor C.W. Tang and Assistant Professor S. Dong at Hong Kong University of Science and Technology for their discussion and advices. In addition, part of the research introduced in this section was carried out with the support of JST-ALCA, JSPS Scientific Research Fund (17H04807), and Nanotechnology Platform Project (Molecular/Material Synthesis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Kaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaji, T. (2021). OPV with a Crystalline Organic Pigment Active Layer Up to 10 μm. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_4

Download citation

Publish with us

Policies and ethics

Navigation