Proposal for Future Organic Solar Cells

  • Chapter
  • First Online:
Organic Solar Cells

Abstract

In this chapter, the proposals for future organic solar cells are discussed: the exciton dissociation using single bipolar band-conductive organic semiconductors, doped organic single-crystal substrates with a long exciton diffusion length, and lateral cells showing the efficiency beyond SQ-limit. A critical advantage of organic semiconductors is their suitability for a fine division of the solar spectrum. Suppression of non-radiative recombination dissipated to molecular vibration and trap-assisted non-radiative recombination is a cutting-edge issue for organic solar cells. Voc-loss due to non-radiative recombination would be suppressed to an extent close to the SQ-limit. The spatial and energetic nature of carrier traps should be clarified to suppress the trap-induced recombination. The research on organic solar cells has advanced gradually, on par with that of inorganic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Takeya, J., Kato, J., Hara, K., Yamagishi, M., Hirahara, R., Yamada, K., Nakazawa, Y., Ikehata, S., Tsukagoshi, K., Aoyagi, Y., Takenobu, T., Iwasa, Y.: In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (4 pages) (2007)

    Google Scholar 

  2. Liu, C., Minari, T., Lu, X., Kumatani, A., Takimiya, K., Tsukagoshi, K.: Solution-processable organic single crystals with bandlike transport in field-effect transistors. Adv. Mater. 23, 523 (2011)

    Article  CAS  Google Scholar 

  3. Minder, N.A., Ono, S., Chen, Z., Facchetti, A., Morpurgo, A.F.: Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012)

    Article  CAS  Google Scholar 

  4. Warta, W., Karl, N.: Hot holes in naphthalene: High, electric-field-dependent mobilities. Phys. Rev. B 32, 1172–1182 (1985)

    Article  CAS  Google Scholar 

  5. Avakian, P., Merrield, R.E.: Experimental determination of the diffusion length of triplet excitons in anthracene crystals. Phys. Rev. Lett. 13, 541–543 (1964)

    Article  CAS  Google Scholar 

  6. Ern, V., Avakian, P., Merrield, R.E.: Diffusion of triplet excitons in anthracene crystals. Phys. Rev. 148, 862–867 (1966)

    Article  CAS  Google Scholar 

  7. Williams, D.F., Adolph, J.: Diffusion length of triplet excitons in anthracene crystals. J. Chem. Phys. 46, 4252–4254 (1967)

    Article  CAS  Google Scholar 

  8. Najafov, H., Lee, B., Zhou, Q., Feldman, L.C., Podzorov, V.: Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 9, 938–943 (2010)

    Article  CAS  Google Scholar 

  9. Kikuchi, M., Makmuang, S., Izawa, S., Wongravee, K., Hiramoto, M.: Doped organic single-crystal photovoltaic cells. Org. Electron. 64, 92–96 (2019)

    Article  CAS  Google Scholar 

  10. Yabara, Y., Izawa, S., Hiramoto, M.: Donor/acceptor photovoltaic cells fabricated on p-doped organic single-crystal substrates. Materials 13, 2068 (8 pages) (2020)

    Google Scholar 

  11. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  12. Liu, L., Kan, Y., Gao, K., Wang, J., Zhao, M., Chen, H., Zhao, C., Jiu, T., Jen, A., Li, Y.: Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 32, 1907604 (7 pages) (2020)

    Google Scholar 

  13. Benduhn, J., Tvingstedt, K., Piersimoni, F., Ullbrich, S., Fan, Y., Tropiano, M., McGarry, K.A., Zeika, O., Riede, M.K., Douglas, C.J., Barlow, S., Marder, S.R., Neher, D., Spoltore, D., Vandewal, K.: Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017)

    Article  CAS  Google Scholar 

  14. Yao, J., Kirchartz, T., Vazie, M. S., Faist, M. A., Gong, W., He, Z., Wu, H., Troughton, J., Watson, T., Bryant, D., Nelson, J.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. A 4, 014020 (10 pages) (2015)

    Google Scholar 

  15. Shintaku, N., Hiramoto, M., Izawa, S.: Effect of trap-assisted recombination on open-circuit voltage loss in phthalocyanine/fullerene solar cells. Org. Electron. 55, 69–74 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Hiramoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hiramoto, M. (2021). Proposal for Future Organic Solar Cells. In: Hiramoto, M., Izawa, S. (eds) Organic Solar Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9113-6_10

Download citation

Publish with us

Policies and ethics

Navigation