Part of the book series: Engineering Materials ((ENG.MAT.))

  • 243 Accesses

Abstract

The journey of graphene remains quite interesting from the very beginning of its unexpected and accidental invention as 2D nanomaterial by Novoselov and Geim in the year of 2004 [1]. Several remarkably advantageous properties of graphene have unveiled a new era in nanotechnology in terms of their scientific and technological impact on the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  2. Mattevi, C., et al.: Nanotechnology 23, 344017 (2012)

    Article  CAS  Google Scholar 

  3. Liao, L., et al.: Nature 467, 305 (2010)

    Article  CAS  Google Scholar 

  4. Wei, Z., et al.: Nanotechnology 24(27), 275301 (2013a)

    Article  CAS  Google Scholar 

  5. Liang, G., et al.: Appl. Phys. Lett. 99, 083107 (2011)

    Article  CAS  Google Scholar 

  6. **ng, F., et al.: Appl. Phys. Lett. 102(25), 253501 (2013)

    Article  CAS  Google Scholar 

  7. University of Manchester (October 2013).

    Google Scholar 

  8. Wu, J., et al.: ACS Nano 4, 43 (2010)

    Article  CAS  Google Scholar 

  9. Wei, C., et al.: Nanoscale 5, 4134 (2013b)

    Article  CAS  Google Scholar 

  10. Zhang, F., et al.: Chem. Phys. Lett. 584, 124 (2013)

    Article  CAS  Google Scholar 

  11. Cao, J., et al.: J. Electroanal. Chem. 689, 201 (2013)

    Article  CAS  Google Scholar 

  12. Wu, J., et al.: Appl. Phys. Lett. 92, 263302 (2008)

    Article  CAS  Google Scholar 

  13. Miao, X., et al.: Nano Lett. 12, 2745 (2012)

    Article  CAS  Google Scholar 

  14. X. Xu, et al., Sci. Rep 3, 2012, article number 1489.

    Google Scholar 

  15. Lin, W.J., et al.: Electrochem. Commun. 11, 2153 (2009)

    Article  CAS  Google Scholar 

  16. Ambrosi, A., et al.: Chem. Eur. J. 17, 10763 (2011)

    Article  CAS  Google Scholar 

  17. Sur, U.K.: Graphene: a rising star on the horizon of materials science. Int. J. Electrochem., 1–12 (2012)

    Google Scholar 

  18. Akpan, E.I, Shen, X., Wetzel, B., Friedrich, K.: Design and synthesis of polymer nanocomposites. In: Polymer Composites with Functionalized Nanoparticles, pp. 47–83. Elsevier (2019)

    Google Scholar 

  19. Li, H., Yang, D., Zhang, T., Zhang, P., Wang, F., Qin, C., Yang, R., Chen, Z.D., Li, S.: J. Mater. Sci. 54, 11556–11563 (2019)

    Article  CAS  Google Scholar 

  20. Roach, D.J., Yuan, C., Kuang, X., Li, V.C.F., Blake, P., Romero, M.L., Hammel, I., Yu, K., Qi, H.J., Appl, A.C.S.: Mater. Interfaces 11, 19514–19521 (2019)

    Article  CAS  Google Scholar 

  21. Cai, G., Wang, J., Qian, K., Chen, J., Li, S., Lee, P.S.: Adv. Sci. 4, 1600190 (2017)

    Article  CAS  Google Scholar 

  22. Zhang, M., Wang, C., Wang, H., Jian, M., Hao, X., Zhang, Y.: Adv. Funct. Mater. 27, 1604795 (2017)

    Article  CAS  Google Scholar 

  23. Zheng, Y., Li, Y., Dai, K., Wang, Y., Zheng, G., Liu, C., Shen, C.: Compos. Sci. Technol. 156, 276–286 (2018)

    Article  CAS  Google Scholar 

  24. Sun, J., Zhao, Y., Yang, Z., Shen, J., Cabrera, E., Lertola, M.J., Yang, W., Zhang, D., Benatar, A., Castro, J.M.: Nanotechnology 29, 355304 (2018)

    Article  CAS  Google Scholar 

  25. Wang, L., Luo, J., Chen, Y., Lin, L., Huang, X., Xue, H., Gao, J., Appl, A.C.S.: Mater. Interfaces 11, 17774–17783 (2019)

    Article  CAS  Google Scholar 

  26. Niu, D., Jiang, W., Liu, H., Zhao, T., Lei, B., Li, Y., Yin, L., Shi, Y., Chen, B., Bingheng, Lu.: Reversible Bending Behaviors of Photomechanical Soft Actuators Based on Graphene Nanocomposites. Sci. Rep. 6, 27366 (2016)

    Article  CAS  Google Scholar 

  27. Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., Guo, N.: Electrically conductive thermoplastic Elastomer nanocomposites at ultralow Graphene Loading levels for strain sensor applications. J. Mater. Chem. C (2015)

    Google Scholar 

  28. Li, X., Deng, H., Li, Z., **u, H., Qi, X., Zhang, Q., Wang, K., Chen, F., Fu, Q.: Graphene/thermoplastic polyurethane nanocomposites: surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos. A 68, 264–275 (2015)

    Article  CAS  Google Scholar 

  29. Ronca, A., Rollo, G., Cerruti, P., Fei, G., Gan, X., Buonocore, G.G., Lavorgna, M., **a, H., Silvestre, C., Ambrosio, L.: Selective laser sintering fabricated thermoplastic polyurethane/graphene cellular structures with tailorable properties and high strain sensitivity. Appl. Sci. 9, 864 (2019)

    Article  CAS  Google Scholar 

  30. Liu, Hu., Huang, W., Yang, X., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guob, J., Guo, Z.: Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene Nanocomposites. Journal of Materials Chemistry C 4, 4459–4469 (2016)

    Article  CAS  Google Scholar 

  31. Costa, P., Gonçalves, S.A.P., Mora, H., Carabineiro, S.A.C., Viana, J.C., Lanceros-Mendez, S.: Highly sensitive piezoresistive graphene-based stretchable composites for sensing applications. ACS Appl. Mater. Interfaces (2019)

    Google Scholar 

  32. Pan, S., Pei, Z., **g, Z., Song, J., Zhang, W., Zhang, Q., Sang, S.: A highly stretchable strain sensor based on CNT/graphene/fullerene-SEBS. RSC Adv. 10, 11225–11232 (2020)

    Article  CAS  Google Scholar 

  33. Liang, J., Yanfei, Xu., Huang, Yi., Zhang, L., Wang, Y., Ma, Y., Li, F., Guo, T., Chen, Y.: Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113, 9921–9927 (2009)

    Article  CAS  Google Scholar 

  34. Schäfer, C.G., et al.: Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem. Mater. 25, 2309–2318 (2013)

    Google Scholar 

  35. Tang, R., et al.: Optical pendulum generator based on photomechanical liquid-crystalline actuators. ACS Appl. Mater. Interfaces 7, 8393–8397 (2015)

    Article  CAS  Google Scholar 

  36. Deng, J., et al.: Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc 138, 225–230 (2016)

    Article  CAS  Google Scholar 

  37. Shumei Tang, YuXu., Gehong, Su., Bao, J., Zhang, A.: Photoelectric and flexible poly(styrene-b-ethylene/butylene-b-styrene)-zinc porphyrin–graphene hybrid composite: synthesis, performance, and mechanism. RSC Adv. 8, 35429–35436 (2018)

    Article  Google Scholar 

  38. Zhang, C., Yuan, Z., Zhang, S., Wang, Y., Liu, Z.: Angew. Chem., Int. Ed. 50, 6851–6854 (2011)

    Google Scholar 

  39. Huang, P.J.J., Liu, J.: Small 8, 977–983 (2012)

    Article  CAS  Google Scholar 

  40. He, S.J., Song, B., Li, D., Zhu, C.F., Qi, W.P., Wen, Y.Q., Wang, L.H., Song, S.P., Fang, H.P., Fan, C.H.: Adv. Funct. Mater. 20, 453–459 (2010)

    Article  CAS  Google Scholar 

  41. Song, Y., Duan, H., Zhu, S., Lü, J., Lü, C.: Preparation of temperature-responsive block copolymer anchored graphene oxide@ZnSNPs luminescent nanocomposite for selective detection of 2,4,6-trinitrotoluene. J. Mater. Chem. C (2016)

    Google Scholar 

  42. Yang, H., Paek, K., Kim, B.J.: Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 5, 5720–5724 (2013)

    Article  CAS  Google Scholar 

  43. Nguyen, V.H., Kim, J., Tabassian, R., Kotal, M., Jun, K., Oh, J.-H., Son, J.-M., Manzoor, M.T., Kim, K.J., Oh, I.K.: Electroactive artificial muscles based on functionally antagonistic core–shell polymer electrolyte derived from PS-b-PSS block copolymer. Adv. Sci. 6, 1801196 (2019)

    Google Scholar 

  44. Leea, J.-W., Kwona, T., Kang, Y., Hanc, T.H., Choc, C.G., Honga, S.M., Hwangd, S.W., Koo, C.M.: Styrenic block copolymer/sulfonated graphene oxide composite membranes for highly bendable ionic polymer actuators with large ion concentration gradient. Compos. Sci. Technol. 163, 63–70 (2018)

    Google Scholar 

  45. Ponnamma, D., Sadasivuni, K.K., Strankowski, M., Moldenaers, P., Thomas, S., Grohens, Y.: Interrelated shape memory and Payne effect in polyurethane/graphene oxide nanocomposites. RSC Adv. 3, 16068–16079 (2013)

    Google Scholar 

  46. Kashif, M., Chang, Y.W.: Supramolecular hydrogen-bonded polyolefin elastomer/modified graphene nanocomposites with near infrared responsive shape memory and healing properties. Eur. Polymer J. 66, 273–281 (2015)

    Article  CAS  Google Scholar 

  47. Appel, A.K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 53, 4931–4939 (2012)

    Google Scholar 

  48. Thakur, S., Karak, N.: Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv. 3, 9476–9482 (2013)

    Article  CAS  Google Scholar 

  49. Han, S., Chun, B.C.: Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect. Compos. A Appl. Sci. Manufact. 8, 65–72 (2014)

    Article  CAS  Google Scholar 

  50. Patel, K.K., Purohit, R.: Improved shape memory and mechanical properties ofmicrowave-induced thermoplastic polyurethane/graphenenanoplatelets composites. Sens. Actuat. A 285, 17–24 (2019)

    Google Scholar 

  51. Li, Y., Lian, H., Yanou, Hu., Chang, W., Cui, X., Liu, Y.: Enhancement in mechanical and shape memory properties for liquid crystalline polyurethane strengthened by graphene oxide. Polymers 8, 236 (2016)

    Article  CAS  Google Scholar 

  52. Yoo, H.J., Mahapatra, S.S., Cho, J.W.: High-speed actuation and mechanical properties of graphene-incorporated shape memory polyurethane nanofibers. J. Phys. Chem. C 118, 10408−10415 (2014)

    Google Scholar 

  53. Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: Mechanically robust and shape-memory hybrid aerogels for super-insulating applications. J. Mater. Chem. A (2017)

    Google Scholar 

  54. Rana, S., Cho, J.W., Tan, L.P.: Graphene-crosslinked polyurethane block copolymer nanocomposites with enhanced mechanical, electrical, and shape memory properties. RSC Adv. (2013)

    Google Scholar 

  55. Valentini, L., Cardinali, M., Kenny, J.: Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. J. Polym. Sci., Part B: Polym. Phys. 52, 1100–1106 (2014)

    Google Scholar 

  56. Tan, L., Gan, L., Hu, J., Zhu, H., Han, J.: Functional shape memory composite nanofibers with graphene oxide filler. Composites: Part A 76, 115–123 (2015)

    Google Scholar 

  57. Yang, Y., Ding, X., Urban, M.W.: Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49–50, 34–59 (2015)

    Article  CAS  Google Scholar 

  58. Huang, Lu., Yi, N., Yingpeng, Wu., Zhang, Yi., Zhang, Q., Huang, Yi., Ma, Y., Chen, Y.: Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. Adv. Mater. 25, 2224–2228 (2013)

    Article  CAS  Google Scholar 

  59. Lia, J., Zhang, G., Denga, L., Zhaoa, S., Gaoa, Y., Jianga, K., Sun, R., Wong, C.: In situ polymerization and mechanical reinforced, thermal healable graphene oxide/polyurethane composites based on Diels-Alder chemistry. J. Mater. Chem. A (2014)

    Google Scholar 

  60. Wang, Ke., Zhou, Z., Zhang, J., Tang, J., Peiyu, Wu., Wang, Y., Zhao, Y., Leng, Y.: Electrical and thermal and self-healing properties of graphene-thermopolyurethane flexible conductive films. Nanomaterials 10, 753 (2020)

    Article  CAS  Google Scholar 

  61. Thakur, S., Karak, N.: Tuning of sunlight-induced self-cleaning and selfhealing attributes of an elastomeric nanocomposite by judicious compositional variation of the TiO2– reduced graphene oxide nanohybrid. J. Mater. Chem. A 3, 12334–12342 (2015)

    Article  CAS  Google Scholar 

  62. Bayan, R., Karak, N.: Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: towards creating high performance smart materials. Compos. A 110, 142–153 (2018)

    Article  CAS  Google Scholar 

  63. Chung, C., Kim, Y.-k., Shin, D., Ryoo, S.-r., Hong, B.H., Min, D.-h.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013)

    Google Scholar 

  64. She, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2(3), 283–294 (2012)

    Google Scholar 

  65. Shi, J., Fang, Y.: Biomedical applications of graphene. In: Zhu, H., Xu, Z., **e, D., Fang, Y. (Eds.), Graphene: fabrication, characterizations, properties and applications, pp. 215–232. Academic Press, London (2018)

    Google Scholar 

  66. Jiana, Z., Wangb, He., Liub, M., Chena, S., Wanga, Z., Qianb, W., Luob, G., **a, H.: Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng., C 111, 110833–110843 (2020)

    Article  CAS  Google Scholar 

  67. Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H.: Biomedical applications of graphene and graphene oxide. Acc. Chem. Res 46, 2211–2224 (2013)

    Article  CAS  Google Scholar 

  68. Garcia-Alegria, E., Iluit, M., Stefanska, M., Silva, C., Heeg, S., Kimber, S.J., Kouskoff, V., Lacaud, G., Vijayaraghavan, A., Batta, K.: Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci. Rep. 6, 25917 (2016)

    Article  CAS  Google Scholar 

  69. Ruiz, O.N., Fernando, K.S., Wang, B., Brown, N.A., Luo, P.G., McNamara, N.D., Vangsness, M., Sun, Y.P., Bunker, C.E.: Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5, 8100–8107 (2011)

    Article  CAS  Google Scholar 

  70. Yang, X.Z., Wang, Y.C., Tang, L.Y., **a, H.A.I., Wang, J.U.N.: Synthesis and eharacterization of amphiphilic block copolymer of polyphosphoester and poly (L-lactic acid). J. Polym. Sci., Part A: Polym. Chem. 46, 6425−6434 (2008)

    Google Scholar 

  71. Chen, Q., Mangadlao, J.D., Wallat, J., De Leon, A., Pokorski, J.K., Advincula, R.C.: 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces 9, 4015−4023 (2017)

    Google Scholar 

  72. **g, X., Mi, H.-Y., Salick, M.R., Peng, X.-F., Turng, L.-S.: Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation. Polym. Compos., 1408–1417 (2014)

    Google Scholar 

  73. Thampi, S., Muthuvijayan, V., Parameswaran, R.: Mechanical characterization of high-performance graphene oxide incorporated aligned fibroporous poly(carbonate urethane) membrane for potential biomedical applications. J. Appl. Polym. Sci., 41809 (2015)

    Google Scholar 

  74. Shams, E.,Yeganeh, H., Naderi-Manesh, H., Gharibi, R., Hassan, Z.M.: Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: in vitro and in vivo evaluations. J. Mater. Sci.: Mater. Med. 28, 75 (2017)

    Google Scholar 

  75. Aïssa, B., Memon, N.K., Ali, A., Khraisheh, M.K.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2, 58 (2015)

    Google Scholar 

  76. Randviir, E.P., Brownson, D.A.C., Banks, C.E.: A decade of graphene research: production, applications and outlook. Mater. Today 17(9), 426–432 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, A., Dasgupta, P., Basak, S. (2020). Potential Application of Graphene-TPE Nanocomposite. In: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9085-6_5

Download citation

Publish with us

Policies and ethics

Navigation