Materials Selection and Design Considerations

  • Chapter
  • First Online:
An Insight Into Metal Based Foams

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 145))

  • 454 Accesses

Abstract

This chapter describes material selection in relation to design considerations using open literature resources. The mechanical, thermal, and electrical properties underlined by fundamental knowledge of design analysis for materials selection is succinctly described. More specifically, the elastic deformation and constitutive equations for failure, buckling, and torsion phenomena are presented. Failure mechanism of dense and metallic foams is explained in relation to materials and design prospective. The chapter also focusses on procedure, function, objectives, constraints, free variable along with single optimization methods, and significance of materials. Additionally, the chapter also addresses the indices for metal foam design of simple structures and constitutive equations for the same are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E:

Young’s modulus or modulus of elasticity

G:

Shear modulus

Et:

Tensile modulus

Ec:

Compression modulus

R:

Resistance of parent metal

Rs:

Resistance of metal foam

L:

Length of panel

B:

Breadth of panel

T:

Thickness of panel

F:

Force per unit width

S*:

Desired bending stiffness

I:

Second moment of area of section

B1, B2:

Constant depending upon the distribution of load

M:

Mass of the panel

x:

Distance of fiber from neutral axis

dA:

The cross section of fiber

Τ:

Torque exerted by the fiber on beam after loading

ym:

Normal distance of outer surface from neutral axis

J:

Polar moment of inertia

M:

Moment

b1, b2:

Constants depending upon the type of loading and the supports of the beam

Ff:

Failure force

Mf:

Failure moment

C:

Constant value which depend upon the support and type of loading

Fcrit:

Critical force required to buckle the beam loaded axially

N:

Half wavelength in buckled shape

K:

Stiffness

T:

Torque applied on cross–section

ρ:

Density of foam

ρs:

Density of parent metal

ρ/ρs:

Relative density of metal foam with respect to parent metal

υ:

Poison’s ratio

εD:

Densification strain

σp1:

Plateau stress

σts:

Ultimate tensile strength

λ :

Thermal Conductivity of parent metal

λs:

Thermal Conductivity of metal foam

ƍ:

Density of panel

σy:

Tensile strength

σ1, σ2, σ3:

Principle stresses

Ɛ:

Strain in fiber

δθ:

An angle subtended by fiber at the center

Δ:

Deflection of the beam

θ :

End slope

τs:

Shearing stress

References

  1. Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55(7), 37–42.

    Article  CAS  Google Scholar 

  2. Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2017). Technical overview of aluminium alloy foam. Reviews on Advanced Materials Science., 48, 68–86.

    Google Scholar 

  3. Sosnick, B. (1943). Process for making foamlike mass of metal. US Patent 2,434,775.

    Google Scholar 

  4. Banhart, J. (2006). Metal foams: Production and stability. Advanced Engineering Materials, 8(9), 781–794.

    Article  CAS  Google Scholar 

  5. Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.

    Article  CAS  Google Scholar 

  6. Ashby, M. F. (Ed.). (2000). Metal foams: A design guide. Butterworth-Heinemann.

    Google Scholar 

  7. Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18(4–6), 217–220.

    Article  CAS  Google Scholar 

  8. Degischer, H.-P., & Kriszt, B. (2003). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience.

    Google Scholar 

  9. Wang, Y., Liew, J. Y. R., Lee, S. C., Zhai, X., & Wang, W. (2017). Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 111, 145–154.

    Article  Google Scholar 

  10. García-Moreno, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.

    Google Scholar 

  11. Das, S., & Prasad, B. K. (2012). Al and Mg based lightweight metallic material for automobile applications. Invertis Journal of Science and Technology, 5(3), 147–156.

    Google Scholar 

  12. Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design, 37(2/3), 114.

    Article  Google Scholar 

  13. Banhart, J. (2000). Manufacturing routes for metallic foams. JOM Journal of the Minerals Metals and Materials Society, 52(12), 22–27.

    Article  CAS  Google Scholar 

  14. Davis, J. R. (Ed.). (1999). Corrosion of aluminum and aluminum alloys. ASM International.

    Google Scholar 

  15. Luo, Y., Yu, S., Liu, J., Zhu, X., & Luo, Y. (2010). Compressive property and energy absorption characteristic of open-cell SiCp/AlSi9Mg composite foams. Journal of Alloys and Compounds, 499(2), 227–230.

    Article  CAS  Google Scholar 

  16. Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2014). An energy absorption behaviour of foam filled structures. Procedia Materials Science, 5, 164–172.

    Article  CAS  Google Scholar 

  17. Rajak, D. K., Kumaraswamidhas, A., & L., & Das, S. . (2015). Energy absorption capabilities of aluminium foam-filled square. Advanced Materials Letters, 6(1), 80–85.

    Article  Google Scholar 

  18. Edvige, C., Alexander, N. C. (2019). Handbook of Graphene, volume 1: Growth, synthesis, and functionalization. Wiley. ISBN: 978-1-119-46861-5.

    Google Scholar 

  19. Heydari, A. A., Shahverdi, H. R., & Elahi, S. H. (2015). Compressive behavior of Zn–22Al closed-cell foams under uniaxial quasi-static loading. Transactions of Nonferrous Metals Society of China, 25(1), 162–169.

    Article  Google Scholar 

  20. Ruan, D., Lu, G., Chen, F. L., & Siores, E. (2002). Compressive behaviour of aluminium foams at low and medium strain rates. Composite Structures, 57(1–4), 331–336.

    Article  Google Scholar 

  21. Paul, A., & Ramamurty, U. (2000). Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering: A, 281(1–2), 1–7.

    Google Scholar 

  22. Patel, A., Das, S., & Prasad, B. K. (2011). Compressive deformation behaviour of Al alloy (2014)–10wt.% SiCp composite: Effects of strain rates and temperatures. Materials Science and Engineering: A, 530, 225–232.

    Article  CAS  Google Scholar 

  23. Hall, I. W., Guden, M., & Yu, C.-J. (2000). Crushing of aluminum closed cell foams: Density and strain rate effects. Scripta Materialia, 43(6), 515–521.

    Article  CAS  Google Scholar 

  24. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press.

    Google Scholar 

  25. Park, C., & Nutt, S. R. (2000). PM synthesis and properties of steel foams. Materials Science and Engineering: A, 288(1), 111–118.

    Article  Google Scholar 

  26. Aly, M. S. (2007). Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results. Materials Letters, 61(14–15), 3138–3141.

    Article  CAS  Google Scholar 

  27. Dilley, D. C. (1974). Mechanical and Production Engineering, 125, 24.

    Google Scholar 

  28. Zhou, J., Gao, Z., Cuitino, A., & Soboyejo, W. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering a, 386(1–2), 118–128.

    Article  Google Scholar 

  29. Wang, Z., Li, Z., Ning, J., & Zhao, L. (2009). Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams. Materials & Design, 30(4), 977–982.

    Article  CAS  Google Scholar 

  30. Cheng, H. (2003). Compressive behavior and energy absorbing characteristic of open cell aluminum foam filled with silicate rubber. Scripta Materialia, 49(6), 583–586.

    Article  CAS  Google Scholar 

  31. Orbulov, I. N., & Ginsztler, J. (2012). Compressive characteristics of metal matrix syntactic foams. Composites Part A: Applied Science and Manufacturing, 43(4), 553–561.

    Article  CAS  Google Scholar 

  32. Harte, A.-M., Fleck, N. A., & Ashby, M. F. (2000). Energy absorption of foam-filled circular tubes with braided composite walls. European Journal of Mechanics—A/Solids, 19(1), 31–50.

    Article  Google Scholar 

  33. Chino, Y., Mabuchi, M., Yamada, Y., Hagiwara, S., & Iwasaki, H. (2003). An experimental investigation of effects of specimen size parameters on compressive and tensile properties in a closed cell al foam. Materials Transactions, 44(4), 633–636.

    Article  CAS  Google Scholar 

  34. Caner, F. C., & Bažant, Z. P. (2009). Size effect on strength of laminate-foam sandwich plates: Finite element analysis with interface fracture. Composites Part B: Engineering, 40(5), 337–348.

    Article  Google Scholar 

  35. Han, F., Cheng, H., Wang, J., & Wang, Q. (2004). Effect of pore combination on the mechanical properties of an open cell aluminum foam. Scripta Materialia, 50(1), 13–17.

    Article  CAS  Google Scholar 

  36. Jiang, B., Wang, Z., & Zhao, N. (2007). Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Materialia, 56(2), 169–172.

    Article  CAS  Google Scholar 

  37. Chen, S., Marx, J., & Rabiei, A. (2016). Experimental and computational studies on the thermal behavior and fire retardant properties of composite metal foams. International Journal of Thermal Sciences, 106, 70–79.

    Article  CAS  Google Scholar 

  38. Ashby, M. F., Brechet, Y. J. M., Cebon, D., & Salvo, L. (2004). Selection strategies for materials and processes. Materials & Design, 25(1), 51–67.

    Article  Google Scholar 

  39. Shanley, F. R. (1960). Weight-strength analysis of aircraft structures. New York: Dover Publications.

    Google Scholar 

  40. Gordon, J. E. (1978). Structures, or why things don’t fall through the floor. Harmondsworth: Penguin Books.

    Book  Google Scholar 

  41. Siddall, J. N. (1982). Optimal engineering design: Principles and applications. M. Dekker.

    Google Scholar 

  42. Johnson, R. C. (1962). Optimum design of mechanical elements. XIV + 535 S. New York/London 1961. Wiley. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 42(10–11), 514–514.

    Google Scholar 

  43. Ashby, M. F. (1999). Materials selection in mechanical design (2nd ed). Butterworth-Heinemann.

    Google Scholar 

  44. Budinski, K. G., & Budinski, M. K. (1999). Engineering materials: Properties and selection (6th ed). Prentice Hall.

    Google Scholar 

  45. Charles, J. A., Crane, F. A. A., & Furness, J. A. G. (1997). Selection and use of engineering materials. Butterworth Heinemann. https://site.ebrary.com/id/10190866.

  46. Ashby, M. F., & Cebon, D. (1999). Case studies in materials selection. Cambridge, UK: Butterworth-Heinemann.

    Google Scholar 

  47. Farag, M. M. (1989). Materials selection for engineering design. Prentice Hall.

    Google Scholar 

  48. Ashby, M. F., & Johnson, K. (2014). Materials and design: The art and science of material selection in product design (3rd ed.). Butterworth-Heinemann.

    Google Scholar 

  49. Lewis, G. (1990). Selection of engineering materials. Englewood Cliffs, NJ, USA: Prentice-Hall.

    Google Scholar 

  50. Dieter, G. E. (1983). Engineering design: A materials and processing approach. McGraw-Hill.

    Google Scholar 

  51. Dieter, G. E. (Ed.). (1997). Materials selection and design (10th ed). ASM International.

    Google Scholar 

  52. Ullman, D. G. (2003). The mechanical design process (3rd ed). McGraw-Hill.

    Google Scholar 

  53. Timosenko, S. P. (1979). Elements of strength of materials. Van Nostrand Reinhold.

    Google Scholar 

  54. Beer, F. P. (2015). Mechanics of materials (7th ed). McGraw-Hill Education.

    Google Scholar 

  55. Hibbeler, R. C. (2017). Mechanics of materials (10th ed). Pearson.

    Google Scholar 

  56. Nash, W. A. (2014). Schaum’s outlines: Strength of materials (6th ed). McGraw Hill Education.

    Google Scholar 

  57. Den Hartog, J. P. (2012). Advanced strength of materials.

    Google Scholar 

  58. Gere, J. M., & Timosenko, S. P. (1985). Mechanics of materials. London: Wadsworth International.

    Google Scholar 

  59. Timosenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. London: McGraw-Hill Koga Kusha Ltd.

    Google Scholar 

  60. Weaver, P. M., & Ashby, M. F. (1996). The optimal selection of material and section-shape. Journal of Engineering Design, 7(2), 129–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Gupta, M. (2020). Materials Selection and Design Considerations. In: An Insight Into Metal Based Foams. Advanced Structured Materials, vol 145. Springer, Singapore. https://doi.org/10.1007/978-981-15-9069-6_4

Download citation

Publish with us

Policies and ethics

Navigation