Manufacturing Methods of Metal Foams

  • Chapter
  • First Online:
An Insight Into Metal Based Foams

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 145))

Abstract

This chapter succinctly presents manufacturing processes for metallic foams. Nine manufacturing process are patented but only five major processes are successfully deployed for commercial purposes. Several manufacturing companies are tirelessly working on conventional and non-conventional approach targeting primarily for more efficient, reliable, reproducible, and low investment production system. These manufacturing systems target separately open-cell and closed-cell metal foams. As historically established in the area of materials science, metal foam properties depend critically on the type of base metal and manufacturing process. The present chapter also provides the glimpse of role of processing parameters which are critical in reproducing the structure and properties of foams. Present chapter also highlights the challenges in the production of metal foams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.

    Article  CAS  Google Scholar 

  2. Banhart, J. (1999). Metal foams and porous metal structures. Berlin: MIT-Verlag.

    Google Scholar 

  3. Banhart, J., Ashby, M. F., & Fleck, N. A. (2001). Cellular metals and metal foaming technology. Berlin: MIT-Verlag.

    Google Scholar 

  4. Banhart, J., Fleck, N. A., & Mortensen, A. (2003). Cellular metals: Manufacture, properties, applications. Berlin: MIT-Verlag.

    Google Scholar 

  5. Degischer, H.-P., & Kriszt, B. (2010). Handbook of cellular metals: Production, processing, applications. Wiley-InterScience.

    Google Scholar 

  6. **, et al. (1990). Method of producing lightweight foamed metal. US Patent No. 4,973,358.

    Google Scholar 

  7. **, et al. (1992). Stabilized metal foam body. US Patent No. 5,112,697.

    Google Scholar 

  8. **, et al. (1993). Lightweight metal with isolated pores and its production. US Patent No. 5,221,324.

    Google Scholar 

  9. Kenny, et al. (1994). Process for shape casting of particle stabilized metal foam. US Patent No. 5,281,251.

    Google Scholar 

  10. Niebyski, et al. (1974). Preparation of metal foams with viscosity increasing gases. US Patent No. 3,816,952.

    Google Scholar 

  11. Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (1998). Aluminum foam, ALPORAS, the production process, properties and applications. Shinko Wire Company, Ltd.

    Google Scholar 

  12. Thomas, et al. (1997). Particle-stablilized metal foam and its production. US Patent No. 5,622,542.

    Google Scholar 

  13. Akiyama, et al. (1987). Foamed metal and method of producing same. US Patent No. 4,713,277.

    Google Scholar 

  14. Elliot, J. C. (1956). Method of producing metal foam. US Patent No. 2,751,289.

    Google Scholar 

  15. ERG Inc. Oakland, USA. Duocel® Aluminum Foam–ERG Aerospace. (https://www.ergaerospace.com) (Access on 13/03/2019).

  16. Schwartz, D. S., & Shih, D.S. (1998). Titanium foams made by gas entrapment. In D. S Schwartz, D. S. Shih, A. G. Evans, & H. N. G. Wadley (Eds.), Porous and cellular materials for structural application. Materials Research Society Proceedings, 521, MRS, Warrendale, PA, USA.

    Google Scholar 

  17. Sang, et al. (1994). Process for producing shaped slabs of particle stabilized foamed metal. US Patent No. 5,334,236.

    Google Scholar 

  18. Paserin, V., Marcuson, S., Shu, J., & Wilkinson, D. S. (2004). CVD Technique for inco nickel foam production. Advanced Engineering Materials, 6(6), 454–459.

    Article  CAS  Google Scholar 

  19. Akiyama, S., Ueno, H., Imagawa, K., Kitahara, A., Nagata, S., Morimoto, K., et al. (1986). Foamed metal and method of producing same. U.S. Patent 4,713,277.

    Google Scholar 

  20. Baumeister J. (1991). Methods for manufacturing foamable metal bodies. US Patent 5,151,246.

    Google Scholar 

  21. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (n.d.). Metal Foams: A Design Guide. 263.

    Google Scholar 

  22. Yu, C. J., & Eifert, H. (1998). Metal foams. Advanced Materials & Processes, 45–47.

    Google Scholar 

  23. MEPURA. (1995). ‘Alulight’ Metallpulver GmbH. Brannau-Ranshofen, Austria.

    Google Scholar 

  24. Quadbeck, P., Kümmel, K., Hauser, R., Standke, G., Adler, J., & Stephani, G. (2010) Open cell metal foams-application-oriented structure and material selection, 10.

    Google Scholar 

  25. Bart-Smith, H., Bastawros, A.-F., Mumm, D. R., Evans, A. G., Sypeck, D. J., & Wadley, H. N. G. (1998). Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain map**. Acta Materialia, 46(10), 3583–3592.

    Google Scholar 

  26. Kottar, A., Kriszt, B., & Degisher, H. P. (1999). Shear test in flatwise plane of flat sandwich constructions or sandwich cores. Philadelphia, PA: American Society for Testing and Materials.

    Google Scholar 

  27. ASTM E8 / E8M-16ae1. (2016) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA.

    Google Scholar 

  28. Andrews, E., Sanders, W., & Gibson, L. J. (1999). Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering: A, 270(2), 113–124.

    Article  Google Scholar 

  29. Andrews, E. W., Gioux, G., Onck, P., & Gibson, L. J. (2001). Size effects in ductile cellular solids. Part II: Experimental results. International Journal of Mechanical Sciences, 43(3), 701–713.

    Google Scholar 

  30. Bastawros, A., & McManuis, R. (1998). Case study: Use of digital image analysis software to measure non-uniform deformation in cellular aluminum alloys. Experimental Techniques, 22(2), 35–37.

    Article  Google Scholar 

  31. Brigham, E. O. (1988). The fast Fourier transform and its applications. Prentice Hall.

    Google Scholar 

  32. Chen, D. J., Chiang, F. P., Tan, Y. S., & Don, H. S. (1993). Digital speckle-displacement measurement using a complex spectrum method. Applied Optics, 32(11), 1839.

    Article  CAS  Google Scholar 

  33. Instron. (1997). Surface displacement analysis user manual.

    Google Scholar 

  34. Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283.

    Article  CAS  Google Scholar 

  35. Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 42(6), 1097–1117.

    Article  Google Scholar 

  36. Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107–124.

    Article  CAS  Google Scholar 

  37. Banhart, J., & Seeliger, H. W. (2012). Recent trends in aluminum foam sandwich technology. Advanced Engineering Materials, 14(12), 1082–1087.

    Article  CAS  Google Scholar 

  38. Neugebauer, R., & Hipke, T. (2006). Machine tools with metal foams. Advanced Engineering Materials, 8(9), 858–863.

    Article  CAS  Google Scholar 

  39. Baumeister, J., Banhart, J., & Weber, M. (1997). Aluminium foams for transport industry. Materials & Design, 18(4–6), 217–220.

    Article  CAS  Google Scholar 

  40. Schäffler, P., Hanko, G., Mitterer, H., & Zach, P. (2008). Alulight metal foam products. In Proceedings of the Porous Metals and Metallic Foams. The Japan Institute of Metals Kyoto, Japan, 7–10.

    Google Scholar 

  41. Eshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467–2476.

    Article  CAS  Google Scholar 

  42. Partee, B., Hollister, S. J., & Das, S. (2006). Selective laser sintering process optimization for layered manufacturing of CAPA® 6501 polycaprolactone bone tissue engineering scaffolds. Journal of Manufacturing Science and Engineering, 128(2), 531–540.

    Article  Google Scholar 

  43. Truscott, M., de Beer, D., Vicatos, G., Hosking, K., Barnard, L., Booysen, G., & Ian Campbell, R. (2007). Using RP to promote collaborative design of customised medical implants. Rapid Prototy** Journal, 13(2), 107–114.

    Article  Google Scholar 

  44. Faustini, M. C., Neptune, R. R., Crawford, R. H., & Stanhope, S. J. (2008). Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Transactions on Biomedical Engineering, 55(2), 784–790.

    Article  Google Scholar 

  45. Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., et al. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327–2336.

    Article  CAS  Google Scholar 

  46. Wang, Y., Shen, Y., Wang, Z., Yang, J., Liu, N., & Huang, W. (2010). Development of highly porous titanium scaffolds by selective laser melting. Materials Letters, 64(6), 674–676.

    Article  CAS  Google Scholar 

  47. Gohler, H., Jehring, U., Kuemmel, K., Meinert, J., Quadbeck, P., Stephani, G., et al. (2012). Metallic hollow sphere structures—Status and outlook. In Proceedings of Cellular Materials—CellMat 2012, 07.09. November 2012, Dresden.

    Google Scholar 

  48. Shapovalow, V. I. (1993). US Patent 5,181, 549.

    Google Scholar 

  49. Banhart, J. (2000). Metallic foams: Challenges and opportunities (pp. 13–20). Berlin: MIT-Verlag.

    Google Scholar 

  50. Korner, C., & Singer, R. F. (2000). Processing of metal foams—Challenges and opportunities. Microstructural Investigation and Analysis: Wiley-VCH Verlag GmbH, Weinheim.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Gupta, M. (2020). Manufacturing Methods of Metal Foams. In: An Insight Into Metal Based Foams. Advanced Structured Materials, vol 145. Springer, Singapore. https://doi.org/10.1007/978-981-15-9069-6_3

Download citation

Publish with us

Policies and ethics

Navigation