Introduction to Metallic Foams

  • Chapter
  • First Online:
An Insight Into Metal Based Foams

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 145))

Abstract

In this chapter, metal foams are introduced and fundamentally described. Their unique structure and properties which made them different from conventional materials are introduced. For enhancing their appreciation, this chapter systematically and chronologically summarizes the origin and history of metal foams highlighting the efforts of researchers from prehistoric to modern times. The differentiation of metal foams when compared to conventional materials is highlighted. Different manufacturing methods to develop metal foams are described while simultaneously highlighting the need of optimizing the processing parameters. Finally, their applications originating due to their unique physical and mechanical properties in various industrial sectors are described succinctly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 99.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banhart, J. (2012). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials, 15(3), 82–111.

    Article  CAS  Google Scholar 

  2. Ulm, F.-J. (2001). Construction: Cellular materials. Encyclopedia of Materials: Science and Technology, 1570-1574.

    Google Scholar 

  3. Wheeler, E.(2001). Wood: Macroscopic anatomy. Encyclopedia of Materials: Science and Technology, 9653-9657.

    Google Scholar 

  4. Green, D. J. (2001). Porous ceramic processing. In Encyclopedia of Materials: Science and Technology (pp. 7758–7761).

    Google Scholar 

  5. Benjamin, S. (1943). US2434775A. Retrieved from https://patents.google.com/patent/US2434775A/en.

  6. Elliott, J. C. (1951). US2751289A. Retrieved from https://patents.google.com/patent/US2751289A/en.

  7. Fiedler, S. (1957). US2974034A. Retrieved from https://patents.google.com/patent/US2974034.

  8. Fiedler, S. (1958). US2937938A. Retrieved from https://patents.google.com/patent/US2937938A/en.

  9. Erb, G. H. (1972). Method for sha** products made of foam metal by progressive localized crushing of foam structure. U.S. Patent 3,595,059, issued July 27.

    Google Scholar 

  10. Berry Jr, C. B. (1972). Foamed metal. U.S. Patent 3,671,221, issued June 20.

    Google Scholar 

  11. Niebylski, L. M., Jarema, C. P. (1974). Lead-zinc foams. U.S. Patent 3,847,591, issued November 12.

    Google Scholar 

  12. Thornton, P. H., & Magee, C. L. (1975). The deformation of aluminum foams. Metallurgical Transactions A, 6(6), 1253–1263.

    Article  Google Scholar 

  13. Niebylski, L. M., & Jarema, C. P. (1975). Pressure contouring and bonding of metal foams. U.S. Patent 3,873,392, issued March 25.

    Google Scholar 

  14. Banhart, J., & Weaire, D. (2002). On the road again: Metal foams find favor. Physics Today, 55, 37–42.

    Article  CAS  Google Scholar 

  15. Niebylski, L. M., & Jarema, C. P., Lee, T. E. (1976). Reinforced foamed metal. U.S. Patent 3,940,262, issue Feb 24.

    Google Scholar 

  16. Kendall, B. R. F. (1980). Vacuum applications of metal foams. Journal of Vacuum Science and Technology, 17(6), 1385–1385.

    Article  Google Scholar 

  17. Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.

    Article  CAS  Google Scholar 

  18. Cocks, F. H. (1984). Ultralight reactive metal foams in space—A novel concept. Journal of Spacecraft and Rockets, 21(5), 510–512.

    Article  CAS  Google Scholar 

  19. Miyoshi, T., Itoh, M., Akiyama, S., & Kitahara, A. (2000). ALPORAS aluminum foam: Production process, properties, and applications. Advanced Engineering Materials, 2, 179–183. 10.1002/(SICI)1527-2648(200004)2:43.3.CO;2-7.

    Google Scholar 

  20. Marracino, J. M., Coeuret, F., & Langlois, S. (1987). A first investigation of flow-through porous electrodes made of metallic felts or foams. Electrochimica Acta, 32(9), 1303–1309.

    Article  CAS  Google Scholar 

  21. Baumeister, J. (1991). Verfahren zur Herstellung poroser Metallkorper. German Patent, 40(18), 360.

    Google Scholar 

  22. **, I., Lorne D. K., & Harry S. (1990). Method of producing lightweight foamed metal. U.S. Patent 4,973,358, issued November 27.

    Google Scholar 

  23. Chen, C. P., & Lakes, R. S. (1991). Holographic study of conventional and negative poisson ratio metallic foams: Elasticity, yield and micro-deformation. Journal of Materials Science, 26(20), 5397–5402.

    Article  CAS  Google Scholar 

  24. **, I., Lorne D. K., & Harry S. (1992). Stabilized metal foam body. U.S. Patent 5,112,697, issued May 12.

    Google Scholar 

  25. Clancy, R. B., J. K. Cochran, & T. H. Sanders. (1994). Fabrication and properties of hollow sphere nickel foams. MRS Online Proceedings Library Archive, 372. 10.1557/PROC-372–155.

    Google Scholar 

  26. Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal foam and metal body produced using this process. U.S. Patent 6,915,834, issued July 12.

    Google Scholar 

  27. Knott, W., Niedermann, B., Recksik, M., & Weier, A. (2005). Process for producing metal/metal foam composite components. U.S. Patent 6,874,562, issued April 5.

    Google Scholar 

  28. Dobesberger, F., Flankl, H., & Leitlmeier, D. (2006). Process and device for manufacturing free-flowing metal foam. U.S. Patent 7,144,636, issued December 5.

    Google Scholar 

  29. Kretz, R., Renger, K., Rettenbacher, G., & Hinterberger, A. (2008). Method for producing metal foam bodies. U.S. Patent 7,396,380, issued July 8.

    Google Scholar 

  30. Kattannek, M., Prenger, F., Spriestersbach, J., & Wisniewski, J. (2009). Porous metal foam body. U.S. Patent Application 11/921,141, filed March 26.

    Google Scholar 

  31. Dunand, D. C. & Bansiddhi, A. (2010). Method of making metallic foams and foams produced. U.S. Patent Application 12/590,992, filed June 17.

    Google Scholar 

  32. Campagna, M. J., & Moffat, R. J. (2011). Heat exchanger with conduit surrounded by metal foam. U.S. Patent 8,069,912, issued December 6.

    Google Scholar 

  33. Jung, A., Natter, H., Hempelmann, R., & Lach, E. (2012). Metal foams. U.S. Patent Application 13/377,021, filed July 12.

    Google Scholar 

  34. Klett, J. W., Menchhofer, P. A., & Hunter, J. A. (2013). Metal-bonded graphite foam composites. U.S. Patent Application 13/528,929, filed August 1.

    Google Scholar 

  35. Banhart, J., & Garcia-Moreno, F. (2013). Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material. U.S. Patent 8562904B2, issued October 22.

    Google Scholar 

  36. Cochran, J. K., Sanders, T. H., Strbik, O. M., & C. A. Wedding. (2014). Metal syntactic foam. U.S. Patent 8,815,408, issued August 26.

    Google Scholar 

  37. Babcsan, N., Beke, S., & Makk, B. (2015). Method of producing a metal foam by oscillations and thus obtained metal foam product. U.S. Patent 9,168,584, issued October 27.

    Google Scholar 

  38. Reesink, T. H. (2016). Open-celled, porous shaped body for heat exchangers. U.S. Patent 9,343,209, issued May 17.

    Google Scholar 

  39. Noraas, R. B., Bullied, S. J., Bartholomew, M. F., Blondin, J. F., & Marcin, J. J. (2017). Investment technique for solid mold casting of reticulated metal foams. U.S. Patent 9,789,534, issued October 17.

    Google Scholar 

  40. Wood, T. H., Wetzel, T. G., Luedke, J. G., & Tucker, T. M. (2018). Combined surface cooler and acoustic absorber for turbomachines. U.S. Patent 9,938,931, issued April 10.

    Google Scholar 

  41. Aronsson, R. R., Iseard, B. S., & Kalal, P. (2019). Method of manufacturing hybrid metal foams. U.S. Patent Application 15/639,232, filed January 3.

    Google Scholar 

  42. Lorna J. G., & Michael F. A. (1999), Cellular solids: Structure and properties. Cambridge University Press. 10.1017/CBO9781139878326.

    Google Scholar 

  43. Srivastava, V. C., & Sahoo, Kanai. (2006). Metallic foams: Current status and future prospects. IIM Metal News, 9, 10.

    Google Scholar 

  44. Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559–632.

    Article  CAS  Google Scholar 

  45. Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal foams: A design guide. Elsevier.

    Google Scholar 

  46. Lefebvre, L.-P., Banhart, J., & Dunand, D. C. (2008). Porous metals and metallic foams: Current status and recent developments. Advanced Engineering Materials, 10(9), 775–787.

    Article  CAS  Google Scholar 

  47. Lu, T. J., Stone, H. A., & Ashby, M. F. (1998). Heat transfer in open-cell metal foams. Acta Materialia, 46(10), 3619–3635.

    Article  CAS  Google Scholar 

  48. Ozmat, B., Leyda, B., & Benson, B. (2004). Thermal applications of open-cell metal foams. Materials and Manufacturing Processes, 19(5), 839–862.

    Article  CAS  Google Scholar 

  49. Ambrosio, G., Bianco, N., Chiu, W. K. S., Iasiello, M., Naso, V., & Oliviero, M. (2016). The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Applied Thermal Engineering, 103, 333–343.

    Article  Google Scholar 

  50. Fink, M., Andersen, O., Seidel, T., & Schlott, A. (2018). Strongly orthotropic open cell porous metal structures for heat transfer applications. Metals, 8(7), 554. https://doi.org/10.3390/met8070554.

    Article  CAS  Google Scholar 

  51. Pinkhasov, E. (1990). U.S. Patent No. 4,975,230. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  52. Tan, P. J., Harrigan, J. J., & Reid, S. R. (2002). Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Materials Science and Technology, 18(5), 480–488.

    Article  CAS  Google Scholar 

  53. Jeon, I., Katou, K., Sonoda, T., Asahina, T., & Kang, K.-J. (2009). Cell wall mechanical properties of closed-cell Al foam. Mechanics of Materials, 41(1), 60–73.

    Article  Google Scholar 

  54. Patten, J. W. (1978). U.S. Patent No. 4,099,961. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  55. Image retrieved from https://en.wikipedia.org/wiki/Metal_foam (Assess on 10/07/2019).

  56. Image retrieved from http://www.porous-aluminum.com/sinteredmetal.html (Assess on 10/07/2019).

  57. Coxworth, B. (2018). Hybrid foam combines strengths of wood and metal. Image retrieved from https://newatlas.com/wood-metal-foam/56577/ (Assess on 10/07/2019).

  58. Walther, Gunnar, Kloeden, Burghardt, & Kieback, Bernd. (2010). A new pm process for manufacturing of alloyed foams for high temperature applications. Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM, 2010, 4.

    Google Scholar 

  59. Wen, C. E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., & Mabuchi, M. (2002). Journal of Materials Science Materials in Medicine, 13(4), 397–401.

    Article  CAS  Google Scholar 

  60. Queheillalt, D. T., Katsumura, Y., & Wadley, H. N. G. (2004). Synthesis of stochastic open cell Ni-based foams. Scripta Materialia, 50(3), 313–317.

    Article  CAS  Google Scholar 

  61. Salimon, A., Brechet, Y., Ashby, M. F., & Greer, A. L. (2005). Potential applications for steel and titanium metal foams. Journal of Materials Science, 40(22), 5793–5799.

    Article  CAS  Google Scholar 

  62. Murakami, T., Akagi, T., & Kasai, E. (2014). Development of porous iron based material by slag foaming and its reduction. Procedia Materials Science, 4, 27–32.

    Article  CAS  Google Scholar 

  63. Murakami, Taichi, Ohara, Kensuke, Narushima, Takayuki, & Ouchi, Chiaki. (2007). Development of a new method for manufacturing iron foam using gases generated by reduction of iron oxide. Materials Transactions, 48(11), 2937–2944.

    Article  CAS  Google Scholar 

  64. Murakami, T., Omameuda, G., & Kasai, E. (2010). Effect of Cr2O3 and WO3 addition on pore formation and microstructure in iron foam. ISIJ International, 50, 307–313.

    Article  CAS  Google Scholar 

  65. Schroers, J., & Johnson, W. L. (2004). Ductile bulk metallic glass. Physical Review Letters, 93(25).

    Google Scholar 

  66. Brothers, A. H., Dunand, D. C., Zheng, Q., & Xu, J. (2007). Amorphous Mg-based metal foams with ductile hollow spheres. Journal of Applied Physics, 102(2), 023508.

    Article  CAS  Google Scholar 

  67. Brothers, A., & Dunand, D. (2005). Plasticity and damage in cellular amorphous metals. Acta Materialia, 53(16), 4427–4440.

    Article  CAS  Google Scholar 

  68. Wada, T., Kinaka, M., & Inoue, A. (2006). Effect of volume fraction and geometry of pores on mechanical properties of porous bulk glassy Pd42.5Cu30Ni7.5P20 alloys. Journal of Materials Research, 21(04), 1041–1047.

    Google Scholar 

  69. Banhart, J., & Seeliger, H.-W. (2008). Aluminium foam sandwich panels: Manufacture, metallurgy and applications. Advanced Engineering Materials, 10(9), 793–802.

    Article  CAS  Google Scholar 

  70. Leitlmeier, D., Degischer, H., & Flankl, H. (2002). Development of a foaming process for particulate reinforced aluminum melts. Advanced Engineering Materials, 4, 735–740.

    Article  CAS  Google Scholar 

  71. Goehler, H., Jehring, U., Meinert, J., Hauser, R., Quadbeck, P., Kuemmel, K., et al. (2013). Functionalized metallic hollow sphere structures. Advanced Engineering Materials, 16(3), 335–339.

    Article  CAS  Google Scholar 

  72. Lee, M. G., Hoang, V. M., Yoon, J. W., Han, S. M., Suh, Y. S., & Kang, K. J. (2014). Compressive strength of wire-woven bulk kagome with various orientations. Procedia Materials Science, 4, 209–214.

    Article  CAS  Google Scholar 

  73. Lee, Y. H., Lee, B. K., Jeon, I., & Kang, K. J. (2007). Wire-woven bulk Kagome truss cores. Acta Materialia, 55(18), 6084–6094.

    Article  CAS  Google Scholar 

  74. Korner, C., & Singer, R. F. (2000). Processing of metal foams-challenges and opportunities. Advanced Engineering Materials, 2(4), 159–165.

    Article  CAS  Google Scholar 

  75. Kennedy, A. (2012). Porous metals and metal foams made from powders. Powder Metallurgy. https://doi.org/10.5772/33060.

    Article  Google Scholar 

  76. Babcsan, N., Banhart, J., & Leitlmeier, D. (2003). Metal foams-manufacture and physics of foaming. Retrieved from https://www.kfki.hu/anyagokvilaga/tartalom/2005/jan/03_Babcsan.pdf.

  77. Ryan, G., Pandit, A., & Apatsidis, D. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651–2670.

    Article  CAS  Google Scholar 

  78. Bram, M., Stiller, C., Buchkremer, H. P., Stover, D., & Baur, H. (2000). High-porosity titanium, stainless steel, and superalloy parts. Advanced Engineering Materials, 2(4), 196–199.

    Article  CAS  Google Scholar 

  79. Banhart, J., Baumeister, J. & Weber, M. (1995). Powder metallurgical technology for the production of metallic foams. In European Conference on Advanced PM Materials (Euro PM’95).

    Google Scholar 

  80. Asavavisithchai, S., & Kennedy, A. R. (2006). The effect of compaction method on the expansion and stability of aluminium foams. Advanced Engineering Materials, 8, 810–815.

    Article  CAS  Google Scholar 

  81. Bakan, H. I., & Korkmaz, K. (2015). Synthesis and properties of metal matrix composite foams based on austenitic stainless steels-titanium carbonitrides. Materials and Design, 83, 154–158.

    Article  CAS  Google Scholar 

  82. Li, J. P., de Wijn, J. R., Van Blitterswijk, C. A., & de Groot, K. (2006). Porous Ti6Al4V scaffold directly fabricating by rapid prototy**: Preparation and in vitro experiment. Biomaterials, 27(8), 1223–1235.

    Article  CAS  Google Scholar 

  83. Butev, E., Yeni, E., Yilmaz, E., Esen, Z., & Bor, Åž. (2014). Effect of alkali treatment parameters on surface structures and mechanical properties of porous Ti6Al7Nb scaffolds. IMMC, Istanbul, Turkey.

    Google Scholar 

  84. Banhart, J., & Baumeister, J. (1998). Production methods for metallic foams. MRS Proceedings, 521, 121.

    Article  CAS  Google Scholar 

  85. Shin, H.-C., & Liu, M. (2004). Copper foam structures with highly porous nanostructured walls. Chemistry of Materials, 16(25), 5460–5464.

    Article  CAS  Google Scholar 

  86. Singh, S., & Bhatnagar, N. (2017). A survey of fabrication and application of metallic foams (1925-2017). Journal of Porous Materials, 25(2), 537–554.

    Article  Google Scholar 

  87. Omnia, M. F. G. (2019). Composite metal foams and their applications. retrieved from https://www.omniamfg.com/mechanical/2018/4/16/composite-metal-foams-and-their-applications (Assess on 13/07/2019).

  88. Kalveram, S. (2017). Advances in metal foams. Retrieved from https://www.advancedsciencenews.com/advances-metal-foams/ (Assess on 13/07/2019).

  89. http://www.alantum.com/en/view.php?mn=116 (Assess on 13/07/2019).

  90. https://amcetec.com/ (Assess on 13/07/2019).

  91. Tan, L., Gong, M., Zheng, F., Zhang, B., & Yang, K. (2009). Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomedical Materials, 4(1), 015016.

    Article  CAS  Google Scholar 

  92. Nouri, A., Hodgson, P. D., & Wen, C. (2010). Biomimetic porous titanium scaffolds for orthopedic and dental applications. In Biomimetics learning from nature.

    Google Scholar 

  93. Dai, Z., Nawaz, K., Park, Y., Chen, Q., & Jacobi, A. M. (2012). A comparison of metal-foam heat exchangers to compact multilouver designs for air-side heat transfer applications. Heat Transfer Engineering, 33(1), 21–30.

    Article  CAS  Google Scholar 

  94. Huisseune, H., De Schampheleire, S., Ameel, B., & De Paepe, M. (2015). Comparison of metal foam heat exchangers to a finned heat exchanger for low Reynolds number applications. International Journal of Heat and Mass Transfer, 89, 1–9.

    Article  Google Scholar 

  95. Cardoso, E., & Oliveira, B. (2019). Study of the use of metallic foam in a vehicle for an energy economy racing circuit. Materialwissenschaft und Werkstofftechnik, 41, 257–264.

    Article  Google Scholar 

  96. Liu, P. S., & Chen, G. F. (2014). Porous materials: Processing and applications. Butterworth-Heinemann. https://doi.org/10.1016/C2012-0-03669-1.

    Article  Google Scholar 

  97. Kremer, K,, Liszkiewicz, A., & Adkins, J. (2004). Development of steel foam materials and structures. US DOE and AISI final report DE-FC36-97ID13554 performed by Fraunhofer USA-Delaware Center for Manufacturing and Advanced Materials, Newark, DE.

    Google Scholar 

  98. Neugebauer, R., Hipke, T., Hohlfeld, J., Thümmler, R. (2005). Metal foam as a combination of lightweight engineering and dam**. In R.F. Singer, C. Koerner, V. Alstaedt, H. Muenstedt (Eds.), Cellular metals and polymers 2004 (pp. 13–8).

    Google Scholar 

  99. Smith, B. H., Szyniszewski, S., Hajjar, J. F., Schafer, B. W., & Arwade, S. R. (2012). Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research, 71, 1–10.

    Article  Google Scholar 

  100. Harte, A., Fleck, N. A., & Ashby, M. F. (2000). Sandwich panel design using aluminum alloy foam. Advanced Engineering Materials, 2, 219–222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipen Kumar Rajak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajak, D.K., Gupta, M. (2020). Introduction to Metallic Foams. In: An Insight Into Metal Based Foams. Advanced Structured Materials, vol 145. Springer, Singapore. https://doi.org/10.1007/978-981-15-9069-6_1

Download citation

Publish with us

Policies and ethics

Navigation