Biosensor: An Approach Towards a Sustainable Environment

  • Chapter
  • First Online:
Nanobiosensors for Agricultural, Medical and Environmental Applications

Abstract

Of worldwide concern, ecological pollution affects human security and development. Presence of contaminants, particularly bacterial, viral, and parasitic pathogen poses serious health issues. Hence, there is an urgent requirement of develo** techniques, which can rapidly recognize the pollutions for effective bioremediation processes. The source used for recognition, evaluation, and transformation of pollutants to non-pollutants to restore the ecological balance can be isolated enzymes or biological systems producing enzymes, as entire cells or in the immobilized state. For the detection and measurement of environmental pollution, biosensors are perfect and reliable. In this chapter, the present status of various kinds of biosensors and its applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andreou VG, Clonis YD (2002) A portable fibre-optic pesticide biosensor based on immobilized cholinesterase and sol-gel entrapped bromocresol purple for in-field use. Biosens Bioelectron 17(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  • Andres RT, Narayanaswamy R (1995) Effect of the coupling reagent on the metal inhibition of immobilized urease in an optical biosensor. Analyst 120:1549–1554

    Article  CAS  Google Scholar 

  • Arduini F, Errico I, Amine A, Micheli L, Palleschi G, Moscone D (2007) Enzymatic spectrophotometric method for Aflatoxin B detection based on acetylcholinesterase inhibition. Anal Chem 79(9):3409–3415

    Article  CAS  PubMed  Google Scholar 

  • Blake DA, Jones RM, Blake RC, Pavlov AR, Darwish IA, Yu H (2001) Antibody-based sensors for heavy metal ions. Biosens Bioelectron 16(9–12):799–809

    Article  CAS  PubMed  Google Scholar 

  • Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for Global Health applications. PLoS One 4(7):e6320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen A, Wang R, Bever CRS, **ng S, Hammock BD, Pan T (2014) Smartphone-interfaced lab-on-a-chip devices for field-deployable enzyme-linked immunosorbent assay. Biomicrofluidics 8(6):064101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chun HJ, Park YM, Han YD, Jang YH, Yoon HC (2014) Paper-based glucose biosensing system utilizing a smartphone as a signal reader. Bio Chip J 8(3):218–226

    CAS  Google Scholar 

  • Chung K, Okabe S (2009) Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol 83:965–977

    Article  CAS  PubMed  Google Scholar 

  • Claude D, Houssemeddine G, Andriy B, Jean-Marc C (2007) Whole cell algal biosensors for urban waters monitoring. Ther Nova 7:1507–1514

    Google Scholar 

  • Corbisier P, Lelie D, Borremans B, Provost A, Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Cso¨regi E, Johansson G, Mattiasson B (1999) Whole cell-and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    Article  CAS  Google Scholar 

  • Cowell DC, Dowman AA, Ashcroft T (1995) The detection and identification of metal and organic pollutants in potable water using enzyme assays suitable for sensor development. Biosens Bioelectron 10(6–7):509–516

    Article  CAS  Google Scholar 

  • Cunha I, Biltes R, Sales M, Vasconcelos V (2018) Aptamer-based biosensors to detect aquatic phycotoxins and cyanotoxins. Sensors 18(7):2367

    Article  CAS  PubMed Central  Google Scholar 

  • Dao TNT, Lee EY, Koo B, ** CE, Lee TY, Shin Y (2018) A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis. Anal Biochem 544:87–92

    Article  CAS  PubMed  Google Scholar 

  • Diculescu VC, Chiorcea-Paquim AM, Oliveira-Brett AM (2016) Applications of a DNA-electrochemical biosensor. TrAC Trends in Anal Biochem 79:23–36

    Article  CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337–353

    Article  PubMed  Google Scholar 

  • Foubert A, Beloglazova NV, Hedström M, De Saeger S (2019) Antibody immobilization strategy for the development of a capacitive immunosensor detecting zearalenone. Talanta 191:202–208

    Article  CAS  PubMed  Google Scholar 

  • Fennouh S, Casimiri V, Meyer AG, Burstein C (1998) Kinetic study of heavy metal salt effects on the activity of L-lactate dehydrogenase in solution or immobilized on an oxygen electrode. Biosens Bioelectron 13:903–909

    Article  CAS  PubMed  Google Scholar 

  • Ferrier D, Shaver M, Hands P (2015) Micro- and nano-structure based oligonucleotide sensors. Biosens Bioelectron 68:798–810

    Article  CAS  PubMed  Google Scholar 

  • Fournier D (2005) Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chem Biol Interact 157-158:257–261

    Article  CAS  PubMed  Google Scholar 

  • Gahlaut A, Gothwal A, Chhillar AK, Hooda V (2012) Electrochemical biosensors for determination of organophosphorus compounds: review. Open J Appl Biosens 1(01):1

    Article  CAS  Google Scholar 

  • Guan L, Tian J, Cao R, Li M, Cai Z, Shen W (2014) Barcode-like paper sensor for smartphone diagnostics: an application of blood ty**. Anal Biochem 86(22):11362–11367

    CAS  Google Scholar 

  • Guler G, Cakmak Y, Dagli Z, Aktumsek Aand Ozparlak H (2010) Organochlorine pesticide residues in wheat from Konya region, Turkey. Food Chem Toxicol 48(5):1218–1221

    Article  CAS  PubMed  Google Scholar 

  • Halamek J, Prˇibyl J, Makower A, Skládal P, Scheller F (2005) Sensitive detection of organophosphates in river water by means of a piezoelectric biosensor. Anal Bioanal Chem 382(8):1904–1911

    Article  CAS  PubMed  Google Scholar 

  • Hassani S, Momtaz S, Vakhshiteh F, Maghsoudi AS, Ganjali MR, Norouzi P, Abdollahi M (2017) Biosensors and their applications in detection of organophosphorus pesticides in the environment. Arch Toxicol 91:109–130

    Article  CAS  PubMed  Google Scholar 

  • Hock B, Seifert M, Kramer K (2002) Engineering receptors and antibodies for biosensors. Biosens Bioelectron 17(3):239–249

    Article  CAS  PubMed  Google Scholar 

  • Hui-Li KT-FG (2005) Study of determination of organophosphorus pesticides using biosensors based on cobalt phthalocyanine polymer modified electrodes. Chem Sens 1:011

    Google Scholar 

  • Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme-based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189

    Article  CAS  Google Scholar 

  • Iqbal SS, Mayo SW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15(11–12):549–578

    Article  CAS  PubMed  Google Scholar 

  • Karim F, Fakhruddin ANM (2012) Recent advances in the development of a biosensor for phenol: a review. Rev in Environ Sci Biotechnol 11:261–274

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gil GS, Park HS, Kim HJ (2013) Novel BOD (biological oxygen demand) sensor using a mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  Google Scholar 

  • Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using au nanoparticles. Anal Bioanal Chem 394:33–46

    Article  CAS  PubMed  Google Scholar 

  • Lang Q, Han L, Hou C, Wang F, Liu A (2016) A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta 156:34–41

    Article  PubMed  CAS  Google Scholar 

  • Lee SA, Yang C (2014) A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 14(16):3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang PS, Park TS, Yoon JY (2014) Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor. Sci Rep 4:5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzi E, Minunni M, Tombelli S, Mascini M (2003) New trends in affinity sensing. TrAC Trends Anal Chem 22:810

    Article  CAS  Google Scholar 

  • Mauriz E, Calle A, Manclús J (2007) Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosens Bioelectron 22(7):1410–1418

    Article  CAS  PubMed  Google Scholar 

  • Min WK, Cho YJ, Park JB, Bae YH, Kim EJ, Park K, Seo JH (2009) Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-borne mycotoxin, fumonisin B1. Bioprocess Biosyst Eng 33(1):109–115

    Article  PubMed  CAS  Google Scholar 

  • Modin O, Wilén BM (2012) A novel bioelectrochemical BOD sensor operating with a voltage input. Water Res 46:6113–6120

    Article  CAS  PubMed  Google Scholar 

  • Mostafa GA (2010) Electrochemical biosensors for the detection of pesticides. The Open Electrochem J 2:22–42

    Article  CAS  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidence, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177

    Article  CAS  PubMed  Google Scholar 

  • Mulchandani A, Mulchandani P, Keneva I, Chen W (1998) Biosensors for direct determination of organophosphate nerve agents using recombinant E. coli with surface expressed organophosphorus hydrolase. Anal Chem 70:4140–4145

    Article  CAS  PubMed  Google Scholar 

  • Nicolini AM, Fronczek CF, Yoon JY (2015) Droplet-based immunoassay on a “sticky” nanofibrous surface for multiplexed and dual detection of bacteria using smartphones. Biosens Bioelectron 67:560–569

    Article  CAS  PubMed  Google Scholar 

  • Nougadère A, Reninger JC, Volatier JL, Leblanc JC (2011) Chronic dietary risk characterization for pesticide residues: a ranking and scoring method integrating agricultural uses and food contamination data. Food Chem Toxicol 49(7):1484–1510

    Article  PubMed  CAS  Google Scholar 

  • Okon SL, Ronkainen NJ (2017) Enzyme-based electrochemical glutamate biosensors. In: Electrochemist Sens tech. Intech Open Limited, London, pp 13–32

    Google Scholar 

  • Pagkali V, Petrou PS, Makarona E, Peters J, Haasnoot W, Jobst G, Kakabakos SE (2018) Simultaneous determination of aflatoxin B 1,fumonisin B 1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. J Hazard Mater 359:445–453

    Article  CAS  PubMed  Google Scholar 

  • Pal P, Bhattacharya D, Mukhopadhyay A, Sarkar P (2009) The detection of mercury, cadmium, and arsenic by the deactivation of urease on rhodinizedcarbon. Environ Eng Sci 26:25–32

    Article  CAS  Google Scholar 

  • Pisoschi A (2016) Potentiometric biosensors: concept and analytical applications-an editorial. Biochem Anal Biochem 5(3):e164

    Google Scholar 

  • Peavy HS, Rowe DR, Tchobanoglous G (1988) Environmental Engineering. McGraw Hill Inc, Singapore

    Google Scholar 

  • Pohanka M, Skládal P (2008) Electrochemical biosensors-principles and applications. J Appl Biomed 6:57–64

    Article  CAS  Google Scholar 

  • Podola B, Nowack ECM, Melkonian M (2004) The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compound. Biosens Bioelectron 19:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film-based disposable nucleic acid biosensor. Anal Chim Acta 589(1):6–13

    Article  CAS  PubMed  Google Scholar 

  • Reyes De Corcuera JI, Cavalieri RP (2003) Biosensors. In: Heldman D (ed) Encyclopedia of agricultural, food and biological engineering. CRC Press, Boca Raton, pp 119–123

    Google Scholar 

  • Rogers KR, Gerlach CL (1996) Environmental biosensors – a status report. Environ Sci Technol 30:486–491

    Article  Google Scholar 

  • Rodriguez-Mozaz S, Reder S, Lopez de Alda M, Gauglitz G, Barceló D (2004) Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the River ANAlyser (RIANA), an optical immunosensor. Biosens Bioelectron 19(7):633–640

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez BB, Borbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19(1):1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Ruban G, Ruperd Y, Laveau B, Lucas E (2001) Self-monitoring of water quality in sewer systems using absorbance of ultraviolet and visible light. Wat Sci Tech 44:269–276

    Article  CAS  Google Scholar 

  • Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W (2015) The progress of new label-free techniques for biosensors: a review. Criticism 36:1–17

    Google Scholar 

  • Sassolas A, Prieto-Simón B, Marty JL (2012) Biosensors for pesticide detection: new trends. Am J Analyt Chem 3(3):210

    Article  CAS  Google Scholar 

  • Schramm W, Paek SH, Voss G (1993) Strategies for the immobilization of antibodies. Immuno Methods 3(2):93–103

    Article  CAS  Google Scholar 

  • Schulze H, Vorlová S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18(2–3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Shekhovtsova TN, Muginova SV, Bagirova NA (1997) Determination of organomercury compounds using immobilized peroxidase. Anal Chim Acta 344:145–151

    Article  CAS  Google Scholar 

  • Shukla P, Nigam V, Gupta R, Singh A, Kuhad RC (2013) Sustainable enzyme technology for environment: biosensors for monitoring of pollutants and toxic compounds. In: Kuhad RC, Singh A (eds) Biotechnology for environmental management and resource. Springer, New Delhi, pp 69–74

    Google Scholar 

  • Silva LMC, Salgado AM, Coelho MAZ (2010) Agaricus bisporus as a source of tyrosinase for phenol detection for future biosensor development. Environ Technol 31:611–616

    Article  CAS  PubMed  Google Scholar 

  • Soares JK, Morin KM, Mello C (2004) Antimicrobial peptides for use in biosensing applications. DTIC Document, Fort Belvoir

    Google Scholar 

  • Soldatkin O, Kucherenko I, Marchenko S, Kasap BO, Akata B, Soldatkin A, Dzyadevych S (2014) Application of enzyme/zeolite sensor for urea analysis in serum. Mater Sci 42:155–160

    CAS  Google Scholar 

  • Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    Article  CAS  PubMed  Google Scholar 

  • Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors. Pure Appl Chem 71:2333–2234

    Article  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2005) Methods 37:48–56

    Article  CAS  PubMed  Google Scholar 

  • Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  PubMed  Google Scholar 

  • Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26:1178–1194

    Article  PubMed  CAS  Google Scholar 

  • Velychko TP, Soldatkin OO, Melnyk VG, Marchenko SV, Kirdeciler SK, Akata B, Soldatkin AP, El’skaya AV, Dzyadevych SV (2016) A novel Conductometric urea biosensor with improved analytical characteristic based on recombinant urease adsorbed on nanoparticle of Silicalite. Nanoscale Res Lett 11:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides – a review. Appl Biochem Biotechnol 175:3093–3119

    Article  CAS  PubMed  Google Scholar 

  • Nigam VK, Shukla P (2015) Enzyme based biosensors for detection of environmental pollutants-A Review. J Microbiol Biotechnol 25(11):1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Gan L, Jiang L, Zhang X, Yang X, Chen M, Lan X (2015) Neutralization of staphylococcal enterotoxin B by an Aptamer antagonist. Antimicrob Agents Chemother 59(4):2072–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu X, Zhang Q (2012b) Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnol Lett 34(5):869–874

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu X, Chen J (2014) Development of biosensor technologies for analysis of environmental contaminants. Trends Environ Anal Chem 2:25–32

    Article  CAS  Google Scholar 

  • Wang Y, Zhang X, Zhang C, Liu Y, Liu X (2012a) Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries. Toxicon 60(7):1290–1297

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, Ozcan A (2013) Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7(10):9147–9155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) Lighting up Biochemiluminescence by the surface self-assembly of DNA-Hemin complexes. Chem Bio Chem 5(3):374–379

    Article  CAS  PubMed  Google Scholar 

  • Xu ZX, Gao HJ, Zhang LM, Chen XQ, Qiao XG (2011) The biomimetic immunoassay based on molecularly imprinted polymer: a comprehensive review of recent progress and future prospects. J Food Sci 76(2):R69–R75

    Article  CAS  PubMed  Google Scholar 

  • Yazgan I (2014) Biosensor for selective detection of E. coli in spinach using the strong affinity of derivatized mannose with fimbrial lectin. Biosens Bioelectron 61:266–273

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Tan Y, Cunningham BT (2014) Smartphone fluorescence spectroscopy. Analytic Chem 86(17):8805–8813

    Article  CAS  Google Scholar 

  • Yu Y, Liu Y, Zhen SJ, Huang CZ (2013) A graphene oxide enhanced fluorescence anisotropy strategy for DNAzyme-based assay of metal ions. Chem Comm 49(19):1942

    Article  CAS  PubMed  Google Scholar 

  • Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, Roda A (2015) A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron 64:63–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang L, Tu Z (2014) Organophosphoruspesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens Bioelectron 55:216–219

    Article  CAS  PubMed  Google Scholar 

  • Zhi-tao C, Yan Z, **ang-** Z, **-Hu Z, Wen-Fan W, Jian-Hui Z (2010) Determination of the phosalone by flow-injection chemiluminescent. Fujian Anal Test 4:007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam P. Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negi, N.P., Choephel, T. (2020). Biosensor: An Approach Towards a Sustainable Environment. In: Mohsin, M., Naz, R., Ahmad, A. (eds) Nanobiosensors for Agricultural, Medical and Environmental Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-8346-9_3

Download citation

Publish with us

Policies and ethics

Navigation