A Robust Unscented Kalman Filter for Tracking Star-Convex Extended Target with the Non-uniform Scattering Sources

  • Conference paper
  • First Online:
Advances in Guidance, Navigation and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 644))

  • 260 Accesses

Abstract

Conventional extended target tracking algorithms rely upon the hypothesis of the uniformly distributed scattering sources. However, the change of radar azimuth makes the statistics characteristic of the scattering source changed. In this paper, a robust star-convex extended target tracking algorithm is proposed to deal with this issue. Uniform distributed pseudo-measurement is generated by using the Centroid Contour Distance method (CCD) and Acceptance-Rejection sampling method, and then Double Layer Unscented Kalman filter (UKF) is derived to calculate the posterior intensity of kinematic state and shape parameters. Simulation results confirm the superiority of the proposed methods in comparison with classic UKF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Challa, S., Morelande, M.R., Musicki, D., Evans, R.J.: Fundamentals of Object Tracking. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  2. Sychev, M.I.: Precision tracking algorithms of civil aircraft by radar information. Russ. Aeronaut. 60(2), 190–197 (2017)

    Article  Google Scholar 

  3. Chen, X., Li, Y., Li, Y.: Active sonar target tracking based on the GM-CPHD filter algorithm. **bei Gongye Daxue Xuebao J. Northwest. Polytechnical Univ. 36(4), 656–663 (2018)

    Article  Google Scholar 

  4. Skolnik, M.: Radar Handbook, 3rd edn. Publishing House of Electronics Industry, Bei**g (2008)

    Google Scholar 

  5. Lan, J., Li, X.R.: Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Trans. Signal Process. 62(9), 2450–2463 (2014)

    Article  MathSciNet  Google Scholar 

  6. Lan, J., Li, X.R.: Extended object or group target tracking using random matrix with nonlinear measurements. In: 19th International Conference on Information Fusion, pp. 1–8. IEEE Press, Heidelberg (2016)

    Google Scholar 

  7. Baum, M., Hanebeck, U.D.: Extended object tracking with random hypersurface models. IEEE Trans. Aerosp. Electron. Syst. 50(1), 149–159 (2014)

    Article  Google Scholar 

  8. Aftab, W., Hostettler, R., De Freitas, D.A.: Spatio-temporal gaussian process models for extended and group object tracking with irregular shapes. J. IEEE Trans. Veh. Technol. 68(3), 2137–2151 (2019)

    Article  Google Scholar 

  9. Hirscher, T., Scheel, A., Reuter, S.: Multiple extended object tracking using gaussian processes. In: 19th International Conference on Information Fusion, pp. 1–12. IEEE Press, Heidelberg (2016)

    Google Scholar 

  10. Baum, M., Noack, B., Hanebeck, U.D.: Random hypersurface mixture models for tracking multiple extended objects. In: 51th Conference on Decision and Control and European Control, pp. 1–6. IEEE Press (2012)

    Google Scholar 

  11. Zea, A., Faion, F., Baum, M.: Level-set random hypersurface models for tracking non-convex extended objects. In: 16th International Conference on Information Fusion, pp. 1–8. IEEE Press, Istanbul (2013)

    Google Scholar 

  12. Koch, J.: Bayesian approach to extended object and cluster tracking using random matrices. IEEE Trans. Aerosp. Electron. Syst. 44(3), 1042–1059 (2008)

    Article  Google Scholar 

  13. Bordonaro, S., Willett, P., Bar-Shalom, Y.: Converted measurement sigma point kalman filter for bi-static sonar and radar tracking. J. IEEE Trans. Aerosp. Electr. Syst. (99), 1–12 (2018)

    Google Scholar 

  14. Wang, N., Ma, L., Xu, B.: Extended target probability hypothesis density filter based on cubature Kalman filter. IET Radar Sonar Navig. 9(3), 324–332 (2015)

    Google Scholar 

  15. Wyffels, K., Campbell, M.: Precision tracking via joint detailed shape estimation of arbitrary extended objects. IEEE Trans. Rob. 33(2), 313–332 (2017)

    Article  Google Scholar 

  16. Özkan, E., Wahlstrom, N., Godsill, S.J.: Rao-blackwellised particle filter for star-convexextended target tracking models. In: 19th International Conference on Information Fusion, pp. 1–7. IEEE Press, Heidelberg (2016)

    Google Scholar 

  17. Freitas, D.A., Mihaylova, L., Amadou, G.: A box particle filter method for tracking multiple extended objects. IEEE Trans. Aerosp. Electron. Syst. 55(4), 1–13 (2016)

    Google Scholar 

  18. Granstrom, K., Baum, M.: Extended object tracking: introduction, overview and applications. J. Adv. Infor. Fusion 12(2), 1–30 (2017)

    Google Scholar 

  19. Ertl, T.: Computer Graphics — Principles and Practice. Springer, Vienna (1996)

    Book  Google Scholar 

  20. Walker, R.J., Snoeyink, J.: Practical point-in-polygon tests using CSG representations of polygons. In: The 1999 International Conference on algorithm engineering and experimentation, pp. 114–123

    Google Scholar 

  21. Yang, S., Baum, M.: Second-order extended kalman filter for extended object and group tracking. In: 19th International Conference on Information Fusion, pp. 1–11. IEEE Press, Heidelberg (2016)

    Google Scholar 

  22. Sun, L., Zhang, S., Ji, B.: Performance evaluation for shape estimation of extended objects using a modified hausdorff distance. In: The 2016 IEEE International Conference on Information and Automation, pp. 780–784. IEEE Press, Ningbo (2016)

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by Education Department Research Project of Shaan xi Provincial Government (17JK0369), and the Industrial Science and Technology Research Project of Shaan xi Province (2019GY-069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaobo Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, T., Li, L., Chen, C., Kun, W., Li, Y. (2022). A Robust Unscented Kalman Filter for Tracking Star-Convex Extended Target with the Non-uniform Scattering Sources. In: Yan, L., Duan, H., Yu, X. (eds) Advances in Guidance, Navigation and Control . Lecture Notes in Electrical Engineering, vol 644. Springer, Singapore. https://doi.org/10.1007/978-981-15-8155-7_4

Download citation

Publish with us

Policies and ethics

Navigation