Enhancement in Mechanical Properties of Polyethylene Using h-BN Nanofiller

  • Conference paper
  • First Online:
Advances in Systems Engineering

Abstract

In this present study, effect of h-BN nanosheet on mechanical properties of polyethylene was studied using molecular dynamics-based approach. A reactive force field was used to predict the mechanical performance of polyethylene/BNNS nanocomposite. It was predicted from the simulations that fracture strength of pure polyethylene improved by 22% with an addition of 3wt% of BNNS. Furthermore, the interaction energy and toughness of nanocomposites increases with the addition of BNNS in PE matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li X et al (2013) Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater 25(15):2200–2204. https://doi.org/10.1002/adma.201204031

    Article  Google Scholar 

  2. Sharma BB, Parashar A (2019)A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterialsCrit Rev Solid State Mater Sci 0(0):1–37 https://doi.org/10.1080/10408436.2019.1582003

  3. Sharma SS, Sharma BB, Parashar (2019) Mechanical and fracture behavior of water submerged grapheme. J Appl Phys 125(21). https://doi.org/10.1063/1.5088884

  4. Sharma SS, Sharma BB, Parashar A (2019) Defect formation dynamics in dry and water submerged graphene nanosheets. Mater. Res. Express 6(7). https://doi.org/10.1088/2053-1591/ab19fc

  5. Sharma BB, Parashar A (2020) Mechanical and fracture behaviour of hydroxyl functionalized h-BN nanosheets. J Mater Sci 55(8):3228–3242. https://doi.org/10.1007/s10853-019-04163-7

    Article  Google Scholar 

  6. Zunger A, Katzir A, Halperin A (1976) Optical properties of hexagonal boron nitride. Phys Rev B 13(12):5560–5573. https://doi.org/10.1103/PhysRevB.13.5560

    Article  Google Scholar 

  7. Baowan D, Cox BJ, Hill JM (2008) Junctions between a boron nitride nanotube and a boron nitride sheet. Nanotechnology 19(7). https://doi.org/10.1088/0957-4484/19/7/075704.

  8. Slotman GJ, Fasolino A (2013) Structure, stability and defects of single layer hexagonal BN in comparison to grapheme. J Phys Condens Matter 25(4). https://doi.org/10.1088/0953-8984/25/4/045009

  9. Meng J, Tajaddod N, Cranford SW, Minus ML (2015) Polyethylene-assisted exfoliation of hexagonal boron nitride in composite fibers: a combined experimental and computational study. Macromol Chem Phys 216(8):847–855. https://doi.org/10.1002/macp.201400585

    Article  Google Scholar 

  10. Sharma BB, Parashar A (2019) Atomistic simulations to study the effect of grain boundaries and hydrogen functionalization on the fracture toughness of bi-crystalline h-BN nanosheets. Phys Chem Chem Phys 21(24):13116–13125. https://doi.org/10.1039/c9cp01661a

    Article  Google Scholar 

  11. Sharma BB, Parashar A (2019) Atomistic simulations to study the effect of water molecules on the mechanical behavior of functionalized and non-functionalized boron nitride nanosheets. Comput Mater Sci 169:109092. https://doi.org/10.1016/j.commatsci.2019.109092

  12. Kumar R, Parashar A (2017) “Fracture toughness enhancement of h-BN monolayers via hydrogen passivation of a crack edge. Nanotechnology 28(16). https://doi.org/10.1088/1361-6528/aa6294

  13. Sahputra IH, Echtermeyer AT (2013) Effects of temperature and strain rate on the deformation of amorphous polyethylene: a comparison between molecular dynamics simulations and experimental results. Model Simul Mater Sci Eng 21(6). https://doi.org/10.1088/0965-0393/21/6/065016

  14. Chaurasia A, Verma A, Parashar A, Mulik RS (2019) Experimental and computational studies to analyze the effect of h-BN nanosheets on mechanical behavior of h-BN/polyethylene nanocomposites. J Phys Chem C 123(32):20059–20070. https://doi.org/10.1021/acs.jpcc.9b05965

    Article  Google Scholar 

  15. Rahman R, Foster JT (2014) Deformation mechanism of graphene in amorphous polyethylene: a molecular dynamics based study. Comput Mater Sci 87:232–240. https://doi.org/10.1016/j.commatsci.2014.02.023

    Article  Google Scholar 

  16. Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer (Guildf) 51(25):6071–6083. https://doi.org/10.1016/j.polymer.2010.10.009

    Article  Google Scholar 

  17. Chawla R, Sharma S (2017) Molecular dynamics simulation of carbon nanotube pull-out from polyethylene matrix. Compos Sci Technol 144:169–177. https://doi.org/10.1016/j.compscitech.2017.03.029

    Article  Google Scholar 

  18. Kumar R, Parashar A (2018) Effect of geometrical defects and functionalization on the interfacial strength of h-BN/polyethylene based nanocomposite. Polymer (Guildf) 146:82–90. https://doi.org/10.1016/j.polymer.2018.05.041

    Article  Google Scholar 

  19. Chabba S et al (2007) Accelerated aging study of ultra high molecular weight polyethylene yarn and unidirectional composites for ballistic applications. J. Mater Sci 42(8):2891–2893. https://doi.org/10.1007/s10853-007-1617-7

    Article  Google Scholar 

  20. Xu T, Farris RJ (2007) Comparative studies of ultra high molecular weight polyethylene fiber reinforced composites. Polym Eng Sci 47(10):1544–1553. https://doi.org/10.1002/pen.20876

    Article  Google Scholar 

  21. Rahman R, Haque A (2013) Molecular modeling of crosslinked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos Part B Eng 54(1):353–364. https://doi.org/10.1016/j.compositesb.2013.05.034

    Article  Google Scholar 

  22. Lv C, Xue Q, **a D, Ma M (2012) Effect of chemisorption structure on the interfacial bonding characteristics of graphene-polymer composites. Appl Surf Sci 258(6):2077–2082. https://doi.org/10.1016/j.apsusc.2011.04.056

    Article  Google Scholar 

  23. Li M, Zhou H, Zhang Y, Liao Y, Zhou H (2017) The effect of defects on the interfacial mechanical properties of graphene/epoxy composites. RSC Adv 7(73):46101–46108. https://doi.org/10.1039/c7ra08243f

    Article  Google Scholar 

  24. Ramanathan T et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331. https://doi.org/10.1038/nnano.2008.96

    Article  Google Scholar 

  25. Nasrabadi AT, Foroutan M (2010) Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach. J Phys Chem B 114(47):15429–15436. https://doi.org/10.1021/jp106330c

    Article  Google Scholar 

  26. Sainsbury T et al (2012) Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc 134(45):18758–18771. https://doi.org/10.1021/ja3080665

    Article  Google Scholar 

  27. Lee D, Lee B, Park KH, Ryu HJ, Jeon S, Hong SH (2015) Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. https://doi.org/10.1021/nl504397h.

  28. Ahadi Z, Shadman M, Yeganegi S, Asgari F (2012) Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study. J Mol Model 18(7):2981–2991. https://doi.org/10.1007/s00894-011-1316-9

    Article  Google Scholar 

  29. Kumar R, Mertiny P, Parashar A (2016) Effects of different hydrogenation regimes on mechanical properties of h-BN: a reactive force field study. J Phys Chem C 120(38):21932–21938. https://doi.org/10.1021/acs.jpcc.6b05812

    Article  Google Scholar 

  30. Meng F, Chen C, Song J (2017) Lattice trap** and crack decohesion in graphene. Carbon N Y 116:33–39. https://doi.org/10.1016/j.carbon.2017.01.091

    Article  Google Scholar 

  31. Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70(3):1375–1382. https://doi.org/10.1063/1.437577

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Parashar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaurasia, A., Parashar, A., Mulik, R.S. (2021). Enhancement in Mechanical Properties of Polyethylene Using h-BN Nanofiller. In: Saran, V.H., Misra, R.K. (eds) Advances in Systems Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8025-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8025-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8024-6

  • Online ISBN: 978-981-15-8025-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation