Multiphase Numerical Modeling of PCM Integrated Solar Collector

  • Conference paper
  • First Online:
Recent Advances in Mechanical Engineering

Abstract

In the present work, phase change material (paraffin wax) integrated double glazed rectangular finned solar air heater is investigated numerically using implicit discretization scheme. A MATLAB code is developed, capable of providing the solution for unsteady governing energy equations for each element of solar air heater and air flow. Numerical results are validated with published experimental results of a flat absorber plate collector design with PCM (Moradi et al. in Exp Thermal Fluid Sci 89:41–49, 2017 [1]). The idea of integration of PCM and fins with solar air heater is to provide thermal energy backup during off-sunshine hours and increase heat discharging rate of PCM, respectively. The average incident global radiation is the function of time and maximum incident radiation is taken as 960 W/m2. Moreover, a correlation is developed to predict the ambient temperature as reported in Moradi et al. (Exp Thermal Fluid Sci 89:41–49, 2017 [1]) as a function of time. The results showed that the thermal backup of PCM lasted for about 12 h after sunset almost for all selected numbers of fins. The maximum outlet air temperature for 5, 15 and 25 fins is obtained as 42 ℃, 47.16 ℃ and 51.25 ℃, respectively, at mass flow rate of 0.0128 kg/s. Whereas, the maximum instant thermal efficiency for 5, 15, and 25 fins is obtained as 35.867%, 49.375%, and 58.198%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kabeel, A. Khalil, S. Shalaby, M. Zayed, Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers. Manage. 113, 264–272 (2016)

    Article  Google Scholar 

  2. M. Alkilani, K. Sopian, S. Mat, M. Alghoul, Output air temperature prediction in a solar air heater integrated with phase change material. Euro. J. Sci. Res. 27(3), 334–341 (2009)

    Google Scholar 

  3. V. Tyagi, A. Pandey, S. Kaushik, S. Tyagi, Thermal performance evaluation of a solar air heater with and without thermal energy storage: an experimental study. J. Therm. Anal. Calorim. 107(3), 1345–1352 (2011)

    Article  Google Scholar 

  4. A. El Khadraoui, S. Bouadila, S. Kooli, A. Farhat, A. Guizani, Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. J. Clean. Prod. 148, 37–48 (2017)

    Article  Google Scholar 

  5. S. Krishnananth, K.K. Murugavel, Experimental study on double pass solar air heater with thermal energy storage. J. King Saud Univ. Eng. Sci. 25(2), 135–140 (2013)

    Article  Google Scholar 

  6. M.M. Alkilani, S. Kamaruzzaman, M. Sohif, Fabrication and experimental investigation of PCM capsules integrated in solar air heater. Am. J. Environ Sci. 7(6), 542–546 (2011)

    Article  Google Scholar 

  7. H.E. Fath, Transient analysis of thermosyphon solar air heater with built-in latent heat thermal energy storage system. Renew. Energy 6(2), 119–124 (1995)

    Article  Google Scholar 

  8. S. Shalaby, M. Bek, Experimental investigation of a novel indirect solar dryer implementing PCM as energy storage medium. Energy Convers. Manage. 83, 1–8 (2014)

    Article  Google Scholar 

  9. S. Bouadila, S. Kooli, M. Lazaar, S. Skouri, A. Farhat, Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energy 110, 267–275 (2013)

    Article  Google Scholar 

  10. P. Charvát, L. Klimeš, M. Ostrý, Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy Build. 68, 488–497 (2014)

    Article  Google Scholar 

  11. A. Mahmud, K. Sopian, M. Alghoul, M. Sohif, Using a paraffin wax-aluminum compound as a thermal storage material in a solar air heater. ARPN J. Eng. Appl. Sci. 4(10), 74–77 (2009)

    Google Scholar 

  12. S. Esakkimuthu, A.H. Hassabou, C. Palaniappan, M. Spinnler, J. Blumenberg, R. Velraj, Experimental investigation on phase change material based thermal storage system for solar air heating applications. Sol. Energy 88, 144–153 (2013)

    Article  Google Scholar 

  13. S. Enibe, Thermal analysis of a natural circulation solar air heater with phase change material energy storage. Renew. Energy 28(14), 2269–2299 (2003)

    Article  Google Scholar 

  14. R. Moradi, A. Kianifar, S. Wongwises, Optimization of a solar air heater with phase change materials: experimental and numerical study. Exp. Thermal Fluid Sci. 89, 41–49 (2017)

    Article  Google Scholar 

  15. P. Theunissen, J. Buchlin, Numerical optimization of a solar air heating system based on encapsulated PCM storage. Sol. Energy 31(3), 271–277 (1983)

    Article  Google Scholar 

  16. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes (John Wiley & Sons, 2013)

    Google Scholar 

  17. S. Singh, P. Dhiman, A numerical evaluation of thermal performance of double flow packed bed solar air heaters. Int. J. Renew. Energy Technol. 4(3), 242–264 (2013)

    Article  Google Scholar 

  18. S. Singh, P. Dhiman, Thermal and thermohydraulic efficiency of recyclic-type double-pass solar air heaters with fins and baffles. Heat Transfer Eng. 37(15), 1302–1317 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Singh Negi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Negi, B.S., Singh, S., Negi, S. (2021). Multiphase Numerical Modeling of PCM Integrated Solar Collector. In: Pandey, K., Misra, R., Patowari, P., Dixit, U. (eds) Recent Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7711-6_84

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7711-6_84

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7710-9

  • Online ISBN: 978-981-15-7711-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation